【題目】如圖 1,在矩形 ABCD 中,動點 E 從點 B 出發(fā),沿 BCDA 方向運動至點 A 處停止,設(shè)點 E 運動的路程為 x,△ABE 的面積為 y,如果 y 關(guān)于 x 的函數(shù)圖象如圖 2 所示,則當 x=10 時,點 E應(yīng)運動到(

A.A B.B C.C D.D

【答案】A

【解析】

根據(jù)函數(shù)圖象可得,點E的運動路程為:03,37,710,所在線段為BC,CD,DA,那么當x=10時,點E應(yīng)運動到點A處.

解:當EBC上運動時,△ABE的面積不斷增大;

ECD運動時,AB一定,高為BC不變,此時面積不變;

當點E運動到A點時,面積為0

∴根據(jù)題意可得:BC=3,CD=4,DA=3

故當x=10時,點P應(yīng)運動點A處.

故選擇:A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知ABCACABBC),用尺規(guī)在線段BC上確定一點P,使得PA+PCBC,則符合要求的作圖痕跡是(

A.如圖① B為圓心,BA長為半徑畫弧交BC于點P

B.如圖②作AC中垂線交BC于點P

C.如圖③以C為圓心,CA 長為半徑畫弧交BC于點P

D.如圖④作AB中垂線交BCP

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】煙臺享有“蘋果之鄉(xiāng)”的美譽.甲、乙兩超市分別用3000元以相同的進價購進質(zhì)量相同的蘋果.甲超市銷售方案是:將蘋果按大小分類包裝銷售,其中大蘋果400千克,以進價的2倍價格銷售,剩下的小蘋果以高于進價10%銷售.乙超市的銷售方案是:不將蘋果按大小分類,直接包裝銷售,價格按甲超市大、小兩種蘋果售價的平均數(shù)定價.若兩超市將蘋果全部售完,其中甲超市獲利2100元(其它成本不計).問:

(1)蘋果進價為每千克多少元?

(2)乙超市獲利多少元?并比較哪種銷售方式更合算.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC=2,∠B=C=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段ACE

1)當∠BDA=115°時,∠EDC=____ __,∠DEC=__ ___;點DBC運動時,∠BAD逐漸變_______(填),∠BAD_______CDE(填“=”“>”“<”.

2)在點D的運動過程中,ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班級45名同學自發(fā)籌集到1700元資金,用于初中畢業(yè)時各項活動的經(jīng)費,計劃將資金用于給每名同學購買一件文化衫或一本制作精美的相冊作為紀念品,已知每件文化衫28元,每本相冊20元.

設(shè)購買的文化衫件數(shù)為x(x為非負整數(shù)).

Ⅰ)根據(jù)題意,填寫下表:

購買的文化衫件數(shù)(件)

5

10

20

30

買文化衫所學費用(元)

140

  

560

  

買相冊所需費用(元)

800

  

500

  

Ⅱ)設(shè)購買文化衫和相冊所需費用共W元,求W與購買的文化衫件數(shù)x的函數(shù)關(guān)系式;

Ⅲ)通過商議,決定拿出不少于540元旦不超過570元的資金用于請專業(yè)人士牌照,其余則用于購買文化衫和相冊,購買文化衫和相冊有哪幾種方案?為使拍照的資金更充足,應(yīng)選擇哪種方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了方便孩子入學,小王家購買了一套學區(qū)房,交首付款15萬元,剩余部分向銀行貸款,貸款及貸款利息按月分期還款,每月還款數(shù)相同.計劃每月還款y萬元,x個月還清貸款,若yx的反比例函數(shù),其圖象如圖所示:

(1)求yx的函數(shù)解析式;

(2)若小王家計劃180個月(15年)還清貸款,則每月應(yīng)還款多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一個等腰直角三角形按圖中方式依次翻折,若DE=aDC=b,則下列說法:①DC′平分∠BDE;②BC的長為2a+b;③△BC′D是等腰三角形;④△CED的周長等于BC的長.其中正確的是()

A.①②③B.②④C.②③④D.③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,邊的中點,為等邊三角形.

1)求證:;

2)若,在邊上找一點,使得最小,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O是原點,矩形OABC的頂點Ax軸的正半軸上,頂點Cy的正半軸上,點B的坐標是(5,3),拋物線y=x2+bx+c經(jīng)過A、C兩點,與x軸的另一個交點是點D,連接BD.

(1)求拋物線的解析式;

(2)點M是拋物線對稱軸上的一點,以M、B、D為頂點的三角形的面積是6,求點M的坐標;

(3)點P從點D出發(fā),以每秒1個單位長度的速度沿D→B勻速運動,同時點Q從點B出發(fā),以每秒1個單位長度的速度沿B→A→D勻速運動,當點P到達點B時,P、Q同時停止運動,設(shè)運動的時間為t秒,當t為何值時,以D、P、Q為頂點的三角形是等腰三角形?請直接寫出所有符合條件的值.

查看答案和解析>>

同步練習冊答案