(2012•南關(guān)區(qū)模擬)如圖,在梯形ABCD中,AB∥CD,AD⊥AB,AD=8cm,DC=8cm,AB=12cm.點(diǎn)P從點(diǎn)A出發(fā),沿線段AD勻速運(yùn)動(dòng),與此同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿線段BA勻速運(yùn)動(dòng),P、Q兩點(diǎn)運(yùn)動(dòng)的速度均為1cm/s,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng),過點(diǎn)Q作QM⊥AB交折線BC-CD于點(diǎn)M.以線段MQ為直角邊在MQ的左側(cè)作等腰直角△MQN,以線段AP為一邊在AP的右側(cè)作正方形APEF,設(shè)運(yùn)動(dòng)時(shí)間為t(s),△MQN與正方形APEF重疊部分的面積為S(cm).
(1)求兩點(diǎn)N、F相遇時(shí)t的值;
(2)求S與t的函數(shù)關(guān)系式;
(3)當(dāng)點(diǎn)M在線段CD上運(yùn)動(dòng)時(shí),設(shè)MN分別交PE、PA于點(diǎn)G、H,請直接寫出在此時(shí)段△PGH掃過平面部分的面積.