【題目】現(xiàn)有2cm,3cm,5cm,7cm長的四條線段,任取其中三條,可以組成的三角形的情況個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

【答案】A

【解析】

列舉出所有組成情況,根據(jù)三角形三邊關系逐一判斷即可.

2cm,3cm,5cm,7cm長的四條線段,任取其中三條有:2、3、5;2、3、7;2、5、7;3、5、7;四種情況,

2+3=5;2+3<7;2+5=7,

2、3、5;2、3、7;2、5、7不能組成三角形,

3、5、7符合三角形的三邊關系,

3、5、7能組成三角形,

∴可以組成三角形的個數(shù)為1.

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題:探究函數(shù)y=|x|﹣2的圖象與性質(zhì).
小華根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=|x|﹣2的圖象與性質(zhì)進行了探究.
下面是小華的探究過程,請補充完整:
(1)在函數(shù)y=|x|﹣2中,自變量x可以是任意實數(shù);
如表是y與x的幾組對應值.

x

﹣3

﹣2

﹣1

0

1

2

3

y

1

0

﹣1

﹣2

﹣1

0

m

①m=;
②若A(n,8),B(10,8)為該函數(shù)圖象上不同的兩點,則n=;
(2)①如圖,在平面直角坐標系xOy中,描出以上表中各對對應值為坐標的點.并根據(jù)描出的點,畫出該函數(shù)的圖象;

(3)該函數(shù)的最小值為;
(4)已知直線 與函數(shù)y=|x|﹣2的圖象交于C、D兩點,當y1≥y時x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列一段文字,然后回答下列問題.
已知在平面內(nèi)兩點P1(x1 , y1)、P2(x2 , y2),其兩點間的距離
同時,當兩點所在的直線在坐標軸或平行于坐標軸或垂直于坐標軸時,兩點間距離公式可簡化為|x2﹣x1|或|y2﹣y1|.
(1)已知A(2,4)、B(﹣3,﹣8),試求A、B兩點間的距離;
(2)已知A、B在平行于y軸的直線上,點A的縱坐標為4,點B的縱坐標為﹣1,試求A、B兩點間的距離;
(3)已知一個三角形各頂點坐標為D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形狀嗎?說明理由;
(4)平面直角坐標中,在x軸上找一點P,使PD+PF的長度最短,求出點P的坐標以及PD+PF的最短長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣2x+a=0有兩個不相等的實數(shù)根,則a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列已知條件,能夠畫出唯一△ABC的是( )

A. AB=5,BC=6,∠A=70° B. AB=5,BC=6,AC=13

C. ∠A=50°,∠B=80°,AB=8 D. ∠A=40°,∠B=50°,∠C=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題6分)甲、乙兩人進行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.

(1)甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;

(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文藝團體為“希望工程”募捐組織了一場義演,共售出2000張票,籌得票款13600元.已知學生票5/張,成人票8/張,問成人票與學生票各售出多少張?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果點P在第四象限內(nèi),點P到x軸的距離是4,到y(tǒng)軸的距離是3,那么點P的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系xOy中,O是坐標原點,點A是函數(shù) (x<0)圖象上一點,AO的延長線交函數(shù) (x>0,k>0的常數(shù))的圖象于點C,點A關于y軸的對稱點為A′,點C關于x軸的對稱點為C′且點O、A′、C′在同一條直線上,連接CC′,交x軸于點B,連接AB,AA′,A′C′,若△ABC的面積等于6,則由線段AC,CC′,C′A′,A′A所圍成的圖形的面積等于

查看答案和解析>>

同步練習冊答案