如圖,直線y=2x+3與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)過B點(diǎn)作直線與x軸交于點(diǎn)P,若△ABP的面積為
154
,試求點(diǎn)P的坐標(biāo).
分析:(1)把x=0,y=0分別代入函數(shù)解析式,即可求得相應(yīng)的y、x的值,則易得點(diǎn)A、B的坐標(biāo);
(2)由B、A的坐標(biāo)易求:OB=3,OA=
3
2
.然后由三角形面積公式得到S△ABP=
1
2
AP•OB=
15
4
,則AP=
5
2
.設(shè)點(diǎn)P的坐標(biāo)為(m,0),則m-(-
3
2
)=
5
2
或-
3
2
-m=
5
2
,由此可以求得m的值.
解答:解:(1)由x=得:y=3,即:B(0,3).
由y=0得:2x+3=0,解得:x=-
3
2
,即:A(-
3
2
,0);

(2)由B(0,3)、A(-
3
2
,0)得:OB=3,OA=
3
2

∵S△ABP=
1
2
AP•OB=
15
4

3
2
AP=
15
4

解得:AP=
5
2

設(shè)點(diǎn)P的坐標(biāo)為(m,0),則m-(-
3
2
)=
5
2
或-
3
2
-m=
5
2
,
解得:m=1或-4,
∴P點(diǎn)坐標(biāo)為(1,0)或(-4,0).
點(diǎn)評:本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.一次函數(shù)y=kx+b,(k≠0,且k,b為常數(shù))的圖象是一條直線.它與x軸的交點(diǎn)坐標(biāo)是(-bk,0);
與y軸的交點(diǎn)坐標(biāo)是(0,b).直線上任意一點(diǎn)的坐標(biāo)都滿足函數(shù)關(guān)系式y(tǒng)=kx+b.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=-2x+b與y軸交于點(diǎn)A,與x軸交于點(diǎn)D,與雙曲線y=
kx
在第一象限交于B、C兩點(diǎn),且AB•BD=2,則k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=-2x+6與x軸、y軸分別交于P、Q兩點(diǎn),把△POQ沿PQ翻折,點(diǎn)O落在R處,則點(diǎn)R的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,直線y=-2x+2與x軸、y軸分別交于點(diǎn)A、B,以線段AB為直角邊在第一象限內(nèi)作等精英家教網(wǎng)腰直角△ABC,∠BAC=90°,過C作CD⊥x軸,垂足為D.
(1)求點(diǎn)A、B的坐標(biāo)和AD的長;
(2)求過B、A、D三點(diǎn)的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y1=2x與雙曲線y2=
8x
相交于點(diǎn)A、E.另一直線y3=x+b與雙曲線交于點(diǎn)A、B,與x、y精英家教網(wǎng)軸分別交于點(diǎn)C、D.直線EB交x軸于點(diǎn)F.
(1)求A、B兩點(diǎn)的坐標(biāo),并比較線段OA、OB的長短;
(2)由函數(shù)圖象直接寫出函數(shù)y2>y3>y1的自變量x的取值范圍;
(3)求證:△COD∽△CBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=-2x+8與兩坐標(biāo)軸分別交于P,Q兩點(diǎn),在線段PQ上有一點(diǎn)A,過點(diǎn)A分別作兩坐標(biāo)軸的垂線,垂足分別為B、C.
(1)若四邊形ABOC的面積為6,求點(diǎn)A的坐標(biāo).
(2)有人說,當(dāng)四邊形ABOC為正方形時,其面積最大,你認(rèn)為正確嗎?若正確,請給予證明;若錯誤,請舉反例說明.

查看答案和解析>>

同步練習(xí)冊答案