(2007•連云港)已知:如圖,在等腰△ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分別為點(diǎn)D,E,連接DE.
求證:四邊形BCDE是等腰梯形.
【答案】分析:已知△ABC為等腰三角形,BD⊥AC,CE⊥AB,可得∠ABC=∠ACB,然后證得△ABD≌△ACE,得出EB=DC,再證明DE∥CB,根據(jù)等腰梯形的判定,可證明四邊形BCDE是等腰梯形.
解答:證明:∵CE⊥AB,BD⊥AC,
∴∠BDA=∠CEA=90°,
在等腰△ABC中,AB=AC,
在△ABD和△ACE中,

∴△ABD≌△ACE(AAS).
∴AE=AD.
∴AB-AE=AC-AD,
即BE=CD,
,∠A=∠A,
∴△AED∽△ABC,
∴∠AED=∠ABC.
∴ED∥BC.
又∵BE,CD不平行,
∴四邊形BCDE是梯形.
∴四邊形BCDE是等腰梯形.
(理由:同一底上的兩底角相等的梯形是等腰梯形,或兩腰相等的梯形是等腰梯形).
點(diǎn)評:本題考查的是等腰梯形的判定以及等腰三角形的性質(zhì),關(guān)鍵是先求出BE=CD,然后利用等腰梯形的判定證明即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《四邊形》(06)(解析版) 題型:解答題

(2007•連云港)如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A,C在坐標(biāo)軸上,OA=60cm,OC=80cm.動點(diǎn)P從點(diǎn)O出發(fā),以5cm/s的速度沿x軸勻速向點(diǎn)C運(yùn)動,到達(dá)點(diǎn)C即停止.設(shè)點(diǎn)P運(yùn)動的時間為ts.
(1)過點(diǎn)P作對角線OB的垂線,垂足為點(diǎn)T.求PT的長y與時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(2)在點(diǎn)P運(yùn)動過程中,當(dāng)點(diǎn)O關(guān)于直線AP的對稱點(diǎn)O'恰好落在對角線OB上時,求此時直線AP的函數(shù)解析式;
(3)探索:以A,P,T三點(diǎn)為頂點(diǎn)的△APT的面積能否達(dá)到矩形OABC面積的?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:選擇題

(2007•連云港)如圖,在△ABC中,AB=AC=2,∠BAC=20°.動點(diǎn)P、Q分別在直線BC上運(yùn)動,且始終保持∠PAQ=100°.設(shè)BP=x,CQ=y,則y與x之間的函數(shù)關(guān)系用圖象大致可以表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2007•連云港)某地區(qū)一種商品的需求量y1(萬件)、供應(yīng)量y2(萬件)與價格x(元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+60,y2=2x-36.需求量為0時,即停止供應(yīng).當(dāng)y1=y2時,該商品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價格與穩(wěn)定需求量;
(2)價格在什么范圍,該商品的需求量低于供應(yīng)量;
(3)當(dāng)需求量高于供應(yīng)量時,政府常通過對供應(yīng)方提供價格補(bǔ)貼來提高供貨價格,以提高供應(yīng)量.現(xiàn)若要使穩(wěn)定需求量增加4萬件,政府應(yīng)對每件商品提供多少元補(bǔ)貼,才能使供應(yīng)量等于需求量?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2007•連云港)如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A,C在坐標(biāo)軸上,OA=60cm,OC=80cm.動點(diǎn)P從點(diǎn)O出發(fā),以5cm/s的速度沿x軸勻速向點(diǎn)C運(yùn)動,到達(dá)點(diǎn)C即停止.設(shè)點(diǎn)P運(yùn)動的時間為ts.
(1)過點(diǎn)P作對角線OB的垂線,垂足為點(diǎn)T.求PT的長y與時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(2)在點(diǎn)P運(yùn)動過程中,當(dāng)點(diǎn)O關(guān)于直線AP的對稱點(diǎn)O'恰好落在對角線OB上時,求此時直線AP的函數(shù)解析式;
(3)探索:以A,P,T三點(diǎn)為頂點(diǎn)的△APT的面積能否達(dá)到矩形OABC面積的?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省黃石市十六中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2007•連云港)某地區(qū)一種商品的需求量y1(萬件)、供應(yīng)量y2(萬件)與價格x(元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+60,y2=2x-36.需求量為0時,即停止供應(yīng).當(dāng)y1=y2時,該商品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價格與穩(wěn)定需求量;
(2)價格在什么范圍,該商品的需求量低于供應(yīng)量;
(3)當(dāng)需求量高于供應(yīng)量時,政府常通過對供應(yīng)方提供價格補(bǔ)貼來提高供貨價格,以提高供應(yīng)量.現(xiàn)若要使穩(wěn)定需求量增加4萬件,政府應(yīng)對每件商品提供多少元補(bǔ)貼,才能使供應(yīng)量等于需求量?

查看答案和解析>>

同步練習(xí)冊答案