【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3B1B2,B3,分別在直線yx+bx軸上.OA1B1,B1A2B2,B2A3B3,都是等腰直角三角形如果點(diǎn)A111),那么點(diǎn)A2019的縱坐標(biāo)是_____

【答案】

【解析】

設(shè)點(diǎn)A2,A3,A4A2019坐標(biāo),結(jié)合函數(shù)解析式,尋找縱坐標(biāo)規(guī)律,進(jìn)而解題.

A11,1)在直線y=x+b,

b=,

y=x+,

設(shè)A2x2y2),A3x3y3),A4x4,y4),,A2019x2019,y2019

則有 y2=x2+,

y3=x3+,

y2019=x2019+

又∵△OA1B1,B1A2B2B2A3B3都是等腰直角三角形.

x2=2y1+y2,

x3=2y1+2y2+y3

x2019=2y1+2y2+2y3+…+2y2018+y2019

將點(diǎn)坐標(biāo)依次代入直線解析式得到:

y2=y1+1

y3=y1+y2+1=y2

y4=y3

y2019=y2018

又∵y1=1

y2=y3=2

y4=3

y2019=2018

故答案為(2018

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,四邊形ABCD中,BCAD,∠A=90°,點(diǎn)PA點(diǎn)出發(fā),沿折線ABBCCD運(yùn)動,到點(diǎn)D時停止,已知△PAD的面積s與點(diǎn)P運(yùn)動的路程x的函數(shù)圖象如圖②所示,則點(diǎn)P從開始到停止運(yùn)動的總路程為( 。

A. 4B. 9C. 10D. 4+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列生活、生產(chǎn)現(xiàn)象中,可以用基本事實(shí)兩點(diǎn)確定一條直線來解釋的是(  )

①用兩顆釘子就可以把木條固定在墻上;②把筆尖看成一個點(diǎn),當(dāng)這個點(diǎn)運(yùn)動時便得到一條線;③把彎曲的公路改直,就能縮短路程;④植樹時,只要栽下兩棵樹,就可以把同一行樹栽在同一條直線上.

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點(diǎn)D、E分別在邊AC、AB上,AGBC于點(diǎn)G,AFDE于點(diǎn)F,∠EAF=∠GAC

1)求證:△ADE∽△ABC;

2)若ADBE4AE3,求CD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項(xiàng)目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學(xué)生最喜歡哪一種活動項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,

請回答下列問題:

1)這次被調(diào)查的學(xué)生共有多少人?

2)請你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;

3)在平時的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點(diǎn),AE⊥BF于點(diǎn)G,且BE=1.

1)求證:ABE≌△BCF;

2)求出ABEBCF重疊部分(即BEG)的面積;

3)現(xiàn)將ABE繞點(diǎn)A逆時針方向旋轉(zhuǎn)到AB′E′(如圖2),使點(diǎn)E落在CD邊上的點(diǎn)E′處,問ABE在旋轉(zhuǎn)前后與BCF重疊部分的面積是否發(fā)生了變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線OM上有三點(diǎn)A,B,C,滿足OA=20cm,AB=60cm,BC=10cm,動點(diǎn)PO點(diǎn)出發(fā)沿OM方向以每秒1cm的速度勻速運(yùn)動;動點(diǎn)Q從點(diǎn)C出發(fā),在線段CO上向點(diǎn)O勻速運(yùn)動(點(diǎn)Q運(yùn)動到點(diǎn)O時,立即停止運(yùn)動),點(diǎn)P,Q同時出發(fā).

(1)當(dāng)點(diǎn)P與點(diǎn)Q都同時運(yùn)動到線段AB的中點(diǎn)時,求點(diǎn)Q的運(yùn)動速度;

(2)若點(diǎn)Q運(yùn)動速度為每秒3cm時,經(jīng)過多少時間P,Q兩點(diǎn)相距70cm;

(3)當(dāng)PA=2PB時,點(diǎn)Q運(yùn)動的位置恰好是線段AB的三等分,求點(diǎn)Q的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 的直徑,CD 相切于C, .

1)求證:BC 的平分線.

2)若DC=8, 的半徑OA=6,求CE的長.

【答案】1證明見解析;(24.8

【解析】分析:(1)由,推出,由,推出,可得.2)在中,求出OD,由,可得,由此即可解決問題.

詳解:(1)證明:因?yàn)?/span>,

所以

又因?yàn)?/span>,

所以,

故可得,

即可得的平分線.

2)因?yàn)?/span>DE的切線,

所以,即在中,DC=8,OC=OA=6,所以,

又因?yàn)?/span>

所以,

所以,

即可得EC=4.8

點(diǎn)睛:本題主要考查了切線的性質(zhì)及相似三角形的應(yīng)用,題目難度適中,會綜合運(yùn)用所考查的知識點(diǎn)是解題的關(guān)鍵.

型】解答
結(jié)束】
23

【題目】食品安全受到全社會的廣泛關(guān)注,濟(jì)南市某中學(xué)對部分學(xué)生就食品安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩份尚不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題.

1)接受問卷調(diào)查的學(xué)生共有_____人,扇形統(tǒng)計(jì)圖中基本了解部分所對應(yīng)扇形的圓心角為_____.

2)請補(bǔ)全條形統(tǒng)計(jì)圖.

3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對食品安全知識達(dá)到了解基本了解程度的總?cè)藬?shù).

4)若從對食品安全知識達(dá)到了解程度的2個女生和2個男生中隨機(jī)抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點(diǎn)A對應(yīng)的數(shù)是﹣1B點(diǎn)對應(yīng)的數(shù)是1,一只小蟲甲從點(diǎn)B出發(fā)沿著數(shù)軸的正方向以每秒4個單位的速度爬行至C點(diǎn),再立即返回到A點(diǎn),共用了4秒鐘.

1)求點(diǎn)C對應(yīng)的數(shù);

2)若小蟲甲返回到A點(diǎn)后再作如下運(yùn)動:第1次向右爬行2個單位,第2次向左爬行4個單位,第3次向右爬行6個單位,第4次向左爬行8個單位,依次規(guī)律爬下去,求它第10次爬行所停在點(diǎn)所對應(yīng)的數(shù);

3)若小蟲甲返回到A后繼續(xù)沿著數(shù)軸的負(fù)方向以每秒4個單位的速度爬行,這時另一小蟲乙從點(diǎn)C出發(fā)沿著數(shù)軸的負(fù)方向以每秒7個單位的速度爬行,設(shè)甲小蟲對應(yīng)的點(diǎn)為E點(diǎn),乙小蟲對應(yīng)的點(diǎn)為F點(diǎn),設(shè)點(diǎn)A、EF、B所對應(yīng)的數(shù)分別是xA、xE、xFxB,當(dāng)運(yùn)動時間t不超過1秒時,請你結(jié)合數(shù)軸求出 |xAxE ||xExF |+ |xFxB |= .(直接寫出答案)

查看答案和解析>>

同步練習(xí)冊答案