【題目】如圖,在平面直角坐標系中,點A1,A2,A3…和B1,B2,B3,…分別在直線y=x+b和x軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形如果點A1(1,1),那么點A2019的縱坐標是_____.
【答案】
【解析】
設(shè)點A2,A3,A4…,A2019坐標,結(jié)合函數(shù)解析式,尋找縱坐標規(guī)律,進而解題.
∵A1(1,1)在直線y=x+b,
∴b=,
∴y=x+,
設(shè)A2(x2,y2),A3(x3,y3),A4(x4,y4),…,A2019(x2019,y2019)
則有 y2=x2+,
y3=x3+,
…
y2019=x2019+.
又∵△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.
∴x2=2y1+y2,
x3=2y1+2y2+y3,
…
x2019=2y1+2y2+2y3+…+2y2018+y2019.
將點坐標依次代入直線解析式得到:
y2=y1+1
y3=y1+y2+1=y2
y4=y3
…
y2019=y2018
又∵y1=1
∴y2=y3=()2
y4=()3
…
y2019=()2018
故答案為()2018.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,四邊形ABCD中,BC∥AD,∠A=90°,點P從A點出發(fā),沿折線AB→BC→CD運動,到點D時停止,已知△PAD的面積s與點P運動的路程x的函數(shù)圖象如圖②所示,則點P從開始到停止運動的總路程為( )
A. 4B. 9C. 10D. 4+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列生活、生產(chǎn)現(xiàn)象中,可以用基本事實“兩點確定一條直線”來解釋的是( 。
①用兩顆釘子就可以把木條固定在墻上;②把筆尖看成一個點,當(dāng)這個點運動時便得到一條線;③把彎曲的公路改直,就能縮短路程;④植樹時,只要栽下兩棵樹,就可以把同一行樹栽在同一條直線上.
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D、E分別在邊AC、AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=BE=4,AE=3,求CD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了增強學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學(xué)生最喜歡哪一種活動項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,
請回答下列問題:
(1)這次被調(diào)查的學(xué)生共有多少人?
(2)請你將條形統(tǒng)計圖(2)補充完整;
(3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點,AE⊥BF于點G,且BE=1.
(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現(xiàn)將△ABE繞點A逆時針方向旋轉(zhuǎn)到△AB′E′(如圖2),使點E落在CD邊上的點E′處,問△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積是否發(fā)生了變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線OM上有三點A,B,C,滿足OA=20cm,AB=60cm,BC=10cm,動點P從O點出發(fā)沿OM方向以每秒1cm的速度勻速運動;動點Q從點C出發(fā),在線段CO上向點O勻速運動(點Q運動到點O時,立即停止運動),點P,Q同時出發(fā).
(1)當(dāng)點P與點Q都同時運動到線段AB的中點時,求點Q的運動速度;
(2)若點Q運動速度為每秒3cm時,經(jīng)過多少時間P,Q兩點相距70cm;
(3)當(dāng)PA=2PB時,點Q運動的位置恰好是線段AB的三等分,求點Q的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是 的直徑,CD與 相切于C, .
(1)求證:BC 是的平分線.
(2)若DC=8, 的半徑OA=6,求CE的長.
【答案】(1)證明見解析;(2)4.8
【解析】分析:(1)由,推出,由,推出,可得.(2)在中,求出OD,由,可得,由此即可解決問題.
詳解:(1)證明:因為,
所以,
又因為,
所以,
故可得,
即可得是的平分線.
(2)因為DE是的切線,
所以,即在中,DC=8,OC=OA=6,所以,
又因為,
所以,
所以,
即可得EC=4.8
點睛:本題主要考查了切線的性質(zhì)及相似三角形的應(yīng)用,題目難度適中,會綜合運用所考查的知識點是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
23
【題目】“食品安全”受到全社會的廣泛關(guān)注,濟南市某中學(xué)對部分學(xué)生就食品安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩份尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題.
(1)接受問卷調(diào)查的學(xué)生共有_____人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為_____.
(2)請補全條形統(tǒng)計圖.
(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對食品安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù).
(4)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點A對應(yīng)的數(shù)是﹣1,B點對應(yīng)的數(shù)是1,一只小蟲甲從點B出發(fā)沿著數(shù)軸的正方向以每秒4個單位的速度爬行至C點,再立即返回到A點,共用了4秒鐘.
(1)求點C對應(yīng)的數(shù);
(2)若小蟲甲返回到A點后再作如下運動:第1次向右爬行2個單位,第2次向左爬行4個單位,第3次向右爬行6個單位,第4次向左爬行8個單位,…依次規(guī)律爬下去,求它第10次爬行所停在點所對應(yīng)的數(shù);
(3)若小蟲甲返回到A后繼續(xù)沿著數(shù)軸的負方向以每秒4個單位的速度爬行,這時另一小蟲乙從點C出發(fā)沿著數(shù)軸的負方向以每秒7個單位的速度爬行,設(shè)甲小蟲對應(yīng)的點為E點,乙小蟲對應(yīng)的點為F點,設(shè)點A、E、F、B所對應(yīng)的數(shù)分別是xA、xE、xF、xB,當(dāng)運動時間t不超過1秒時,請你結(jié)合數(shù)軸求出 |xA﹣xE |﹣|xE﹣xF |+ |xF﹣xB |= .(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com