(2007•河南)如圖,點E、F、G、H分別是平行四邊形ABCD的邊AB、BC、CD、DA的中點.
求證:△BEF≌△DGH.

【答案】分析:由三角形全等的判定定理和平行四邊形的性質(zhì),結(jié)合已知條件,利用SAS判定.
解答:證明:∵四邊形ABCD是平行四邊形,
∴∠B=∠D,AB=CD,BC=AD.
又∵E、F、G、H分別是平行四邊形ABCD的四邊中點,
∴BE=DG,BF=DH.
∴△BEF≌△DGH.
點評:本題重點考查了三角形全等的判定定理和平行四邊形的性質(zhì)的綜合運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2009年江蘇省連云港市中考數(shù)學原創(chuàng)試卷大賽(23)(解析版) 題型:解答題

(2007•河南)如圖,對稱軸為直線x=的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標;
(2)設(shè)點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考復習針對性訓練 綜合壓軸題(解析版) 題型:解答題

(2007•河南)如圖,對稱軸為直線x=的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標;
(2)設(shè)點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省武漢市中考數(shù)學模擬試卷(1)(解析版) 題型:解答題

(2007•河南)如圖,對稱軸為直線x=的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標;
(2)設(shè)點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年湖南省永州市初中校長研究會常務理事單位初三聯(lián)考試卷(解析版) 題型:解答題

(2007•河南)如圖,對稱軸為直線x=的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標;
(2)設(shè)點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年河南省中考數(shù)學試卷(解析版) 題型:解答題

(2007•河南)如圖,對稱軸為直線x=的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標;
(2)設(shè)點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案