【題目】如圖所示,在△ABC中,∠A=90°,BD是∠ABC的平分線,DE是BC的垂直平分線,則∠C=

【答案】30°
【解析】解:∵DE是BC的垂直平分線,
∴BE=EC,DE⊥BC,
∴∠CED=∠BED,
∴△CED≌△BED,
∴∠C=∠DBE,
∵∠A=90°,BD是∠ABC的平分線,
∴∠ABE=2∠DBE=2∠C,
∴∠C=30°.
所以答案是:30°.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解角平分線的性質(zhì)定理(定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上),還要掌握線段垂直平分線的性質(zhì)(垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB、CD交于點(diǎn)O,∠1=∠2,∠3:∠1=8:1,求∠4的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,AB=AC,BD,CE是角平分線,圖中的等腰三角形共有(

A.6個(gè)
B.5個(gè)
C.4個(gè)
D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張大伯從報(bào)社以每份0.4元的價(jià)格購(gòu)進(jìn)了a份報(bào)紙,以每份0.5元的價(jià)格售出了b份報(bào)紙,剩余的以每份0.2元的價(jià)格退回報(bào)社,則張大伯賣報(bào)收入元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知2xy=3,用含x的式子表示y,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x=2是關(guān)于x的一元二次方程x2-ax+6=0的一個(gè)解,則a的值為(。

A.-5B.-4C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,△ABC中,D是BC邊上一點(diǎn),則△ABD與△ADC有一個(gè)相同的高,它們的面積之比等于相應(yīng)的底之比,記為(△ABD、△ADC的面積分別用記號(hào)、表示).現(xiàn)有,則

(2)如圖2,△ABC中,E、F分別是BC、AC邊上一點(diǎn),且有 ,AE與BF相交于點(diǎn)G.現(xiàn)作EH∥BF交AC于點(diǎn)H.依次求、、的值.

(3)如圖3,△ABC中,點(diǎn)P在邊AB上,點(diǎn)M、N在邊AC上,且有, ,

BM、BN與CP分別相交于點(diǎn)R、Q.現(xiàn)已知△ABC的面積為1,求△BRQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在太陽(yáng)光下行走,同一時(shí)刻他們的身高與其影長(zhǎng)的關(guān)系是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是邊長(zhǎng)為6的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A、C不重合),Q是CB延長(zhǎng)線上一點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長(zhǎng)線方向運(yùn)動(dòng)(Q不與B重合),過(guò)P作PE⊥AB于E,連接PQ交AB于D.

(1)當(dāng)∠BQD=30°時(shí),求AP的長(zhǎng);
(2)證明:在運(yùn)動(dòng)過(guò)程中,點(diǎn)D是線段PQ的中點(diǎn);
(3)當(dāng)運(yùn)動(dòng)過(guò)程中線段ED的長(zhǎng)是否發(fā)生變化?如果不變,求出線段ED的長(zhǎng);如果變化請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案