【題目】如圖,矩形EFGH的頂點(diǎn)EG分別在菱形ABCD的邊AD,BC上,頂點(diǎn)FH在菱形ABCD的對(duì)角線BD.

(1)求證:BGDE.

(2)EAD中點(diǎn),FH2,求菱形ABCD的周長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)8.

【解析】

1)根據(jù)矩形的性質(zhì)得到EH=FGEH∥FG,得到∠GFH=∠EHF,求得∠BFG=∠DHE,根據(jù)菱形的性質(zhì)得到AD∥BC,得到∠GBF=∠EDH,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;

2)連接EG,根據(jù)菱形的性質(zhì)得到AD=BC,AD∥BC,求得AE=BGAE∥BG,得到四邊形ABGE是平行四邊形,得到AB=EG,于是得到結(jié)論.

解:(1)∵四邊形EFGH是矩形,

EH=FGEH//FG,

∴∠GFH=EHF,

∵∠BFG=180°-GFH,∠DHE=180°-EHF

∴∠BFG=DHE,

∵四邊形ABCD是菱形,

AD//BC,

∴∠GBF=EDH

∴△BGF≌△DEH(AAS),

BG=DE.

(2)連接EG,∵四邊形ABCD是菱形,

AD=BC,

EAD中點(diǎn),

AE=ED,

BG=DE,

AE=BG,AE//BG,

∴四邊形ABGE是平行四邊形,

AB=EG,

EG=FH=2

AB=2,

∴菱形ABCD的周長(zhǎng)=8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】,、為線段上的兩點(diǎn),,且,若,則的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=x+nx軸、y軸分別交于B、C兩點(diǎn),拋物線y=ax2+bx+3(a0)過(guò)CB兩點(diǎn),交x軸于另一點(diǎn)A,連接AC,且tanCAO=3

(1)求拋物線的解析式;

(2)若點(diǎn)P是射線CB上一點(diǎn),過(guò)點(diǎn)Px軸的垂線,垂足為H,交拋物線于Q,設(shè)P點(diǎn)橫坐標(biāo)為t,線段PQ的長(zhǎng)為d,求出dt之間的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)的自變量t的取值范圍;

(3)(2)的條件下,當(dāng)點(diǎn)P在線段BC上時(shí),設(shè)PH=e,已知de是以y為未知數(shù)的一元二次方程:y2(m+3)y+(5m22m+13)=0 (m為常數(shù))的兩個(gè)實(shí)數(shù)根,點(diǎn)M在拋物線上,連接MQ、MH、PM,且.MP平分QMH,求出t值及點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】參與兩個(gè)數(shù)學(xué)活動(dòng),再回答問(wèn)題:

活動(dòng):觀察下列兩個(gè)兩位數(shù)的積兩個(gè)乘數(shù)的十位上的數(shù)都是9,個(gè)位上的數(shù)的和等于,猜想其中哪個(gè)積最大?

,,,,,

活動(dòng):觀察下列兩個(gè)三位數(shù)的積兩個(gè)乘數(shù)的百位上的數(shù)都是9,十位上的數(shù)與個(gè)位上的數(shù)組成的數(shù)的和等于,猜想其中哪個(gè)積最大?

,,,,,

分別寫(xiě)出在活動(dòng)、中你所猜想的是哪個(gè)算式的積最大?

對(duì)于活動(dòng),請(qǐng)用二次函數(shù)的知識(shí)證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線相交于點(diǎn),,在射線上取一點(diǎn),使,過(guò)點(diǎn)于點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),過(guò)點(diǎn)的垂線交射線于點(diǎn).

(1)確定點(diǎn)的位置,在線段上任取一點(diǎn),根據(jù)題意,補(bǔ)全圖形;

(2)設(shè)cmcm,探究函數(shù)隨自變量的變化而變化的規(guī)律.

①通過(guò)取點(diǎn)、畫(huà)圖、測(cè)量,得到了的幾組對(duì)應(yīng)值,如下表:

/cm

/cm

(要求:補(bǔ)全表格,相關(guān)數(shù)值保留一位小數(shù))

)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象;

③結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:當(dāng)斜邊上的中線時(shí),的長(zhǎng)度約為_____cm(結(jié)果保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示A、B、C、D四點(diǎn)在⊙O上的位置,其中=180°,且=,=.若阿超在上取一點(diǎn)P,在上取一點(diǎn)Q,使得∠APQ=130°,則下列敘述何者正確( )

A. Q點(diǎn)在上,且>B. Q點(diǎn)在上,且<

C. Q點(diǎn)在上,且>D. Q點(diǎn)在上,且<

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,整理出某種商品在第天的售價(jià)與銷(xiāo)量的相關(guān)信息如下表:

時(shí)間(天)

售價(jià)(元/件)

90

每天銷(xiāo)量(件)

已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷(xiāo)售該商品的每天利潤(rùn)為

1)求出的函數(shù)關(guān)系式;

2)問(wèn)銷(xiāo)售該商品第幾天時(shí),當(dāng)天銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是多少?

3)該商品在銷(xiāo)售過(guò)程中,共有多少天每天銷(xiāo)售利潤(rùn)不低于4800元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)P在正方形ABCD的對(duì)角線AC上,正方形的邊長(zhǎng)是a,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點(diǎn)M、N.

(1)操作發(fā)現(xiàn):如圖2,固定點(diǎn)P,使△PEF繞點(diǎn)P旋轉(zhuǎn),當(dāng)PM⊥BC時(shí),四邊形PMCN是正方形.填空:①當(dāng)AP=2PC時(shí),四邊形PMCN的邊長(zhǎng)是_________;②當(dāng)AP=nPC時(shí)(n是正實(shí)數(shù)),四邊形PMCN的面積是__________

(2)猜想論證

如圖3,改變四邊形ABCD的形狀為矩形,AB=a,BC=b,點(diǎn)P在矩形ABCD的對(duì)角線AC上,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點(diǎn)M、N,固定點(diǎn)P,使△PEF繞點(diǎn)P旋轉(zhuǎn),則=_______

(3)拓展探究

如圖4,當(dāng)四邊形ABCD滿足條件:∠B+∠D=180°,∠EPF=∠BAD時(shí),點(diǎn)P在AC上,PE、PF分別交BC,CD于M、N點(diǎn),固定P點(diǎn),使△PEF繞點(diǎn)P旋轉(zhuǎn),請(qǐng)?zhí)骄?/span>的值,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案