【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線y=﹣x+n與x軸、y軸分別交于B、C兩點,拋物線y=ax2+bx+3(a≠0)過C、B兩點,交x軸于另一點A,連接AC,且tan∠CAO=3.
(1)求拋物線的解析式;
(2)若點P是射線CB上一點,過點P作x軸的垂線,垂足為H,交拋物線于Q,設(shè)P點橫坐標(biāo)為t,線段PQ的長為d,求出d與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;
(3)在(2)的條件下,當(dāng)點P在線段BC上時,設(shè)PH=e,已知d,e是以y為未知數(shù)的一元二次方程:y2-(m+3)y+(5m2-2m+13)=0 (m為常數(shù))的兩個實數(shù)根,點M在拋物線上,連接MQ、MH、PM,且.MP平分∠QMH,求出t值及點M的坐標(biāo).
【答案】(1) y=-x2+2x+3;(2) ;(3)t=1, (1+,2)和(1-,2).
【解析】
試題分析:(1)當(dāng)x=0時代入拋物線y=ax2+bx+3(a≠0)就可以求出y=3而得出C的坐標(biāo),就可以得出直線的解析式,就可以求出B的坐標(biāo),在直角三角形AOC中,由三角形函數(shù)值就可以求出OA的值,得出A的坐標(biāo),再由待定系數(shù)法建立二元一次方程組求出其解就可以得出結(jié)論;
(2)分兩種情況討論,當(dāng)點P在線段CB上時,和如圖3點P在射線BN上時,就有P點的坐標(biāo)為(t,-t+3),Q點的坐標(biāo)為(t,-t2+2t+3),就可以得出d與t之間的函數(shù)關(guān)系式而得出結(jié)論;
(3)根據(jù)根的判別式就可以求出m的值,就可以求出方程的解而求得PQ和PH的值,延長MP至L,使LP=MP,連接LQ、LH,如圖2,延長MP至L,使LP=MP,連接LQ、LH,就可以得出四邊形LQMH是平行四邊形,進(jìn)而得出四邊形LQMH是菱形,由菱形的性質(zhì)就可以求出結(jié)論.
試題解析:(1)當(dāng)x=0,則y=-x+n=0+n=n,y=ax2+bx+3=3,
∴OC=3=n.
當(dāng)y=0,
∴-x+3=0,x=3=OB,
∴B(3,0).
在△AOC中,∠AOC=90°,tan∠CAO=,
∴OA=1,
∴A(-1,0).
將A(-1,0),B(3,0)代入y=ax2+bx+3,
得
,
解得:
∴拋物線的解析式:y=-x2+2x+3;
(2) 如圖1,
∵P點的橫坐標(biāo)為t 且PQ垂直于x軸 ∴P點的坐標(biāo)為(t,-t+3),
Q點的坐標(biāo)為(t,-t2+2t+3).
∴PQ=|(-t+3)-(-t2+2t+3)|=| t2-3t |
∴;
∵d,e是y2-(m+3)y+(5m2-2m+13)=0(m為常數(shù))的兩個實數(shù)根,
∴△≥0,即△=(m+3)2-4× (5m2-2m+13)≥0
整理得:△= -4(m-1)2≥0,∵-4(m-1)2≤0,
∴△=0,m=1,
∴ PQ與PH是y2-4y+4=0的兩個實數(shù)根,解得y1=y2=2
∴此時Q是拋物線的頂點,
延長MP至L,使LP=MP,連接LQ、LH,如圖2,
∵LP=MP,PQ=PH,∴四邊形LQMH是平行四邊形,
∴LH∥QM,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,
∴LH=MH,∴平行四邊形LQMH是菱形,
∴PM⊥QH,∴點M的縱坐標(biāo)與P點縱坐標(biāo)相同,都是2,
∴在y=-x2+2x+3令y=2,得x2-2x-1=0,∴x1=1+,x2=1-
綜上:t值為1,M點坐標(biāo)為(1+,2)和(1-,2)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了減輕學(xué)生的作業(yè)負(fù)擔(dān),教育局規(guī)定:初中學(xué)段學(xué)生每晚的作業(yè)總量不超過1.5小時,九(1)班學(xué)習(xí)委員亮亮對本班每位同學(xué)晚上完成作業(yè)的時間進(jìn)行了一次統(tǒng)計,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下面的問題:
(1)該班共有多少名學(xué)生?將圖1的條形圖補充完整;
(2)計算出作業(yè)完成時間在1.5~2小時的部分對應(yīng)的扇形圓心角;
(3)如果九年級共有500名學(xué)生,請估計九年級學(xué)生完成作業(yè)時間超過1.5小時的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線AB∥DC,點P為平面上一點,連接AP與CP.
(1)如圖1,點P在直線AB、CD之間,當(dāng)∠BAP=60°,∠DCP=20°時,求∠APC.
(2)如圖2,點P在直線AB、CD之間,∠BAP與∠DCP的角平分線相交于點K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由.
(3)如圖3,點P落在CD外,∠BAP與∠DCP的角平分線相交于點K,∠AKC與∠APC有何數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)這次調(diào)查一共抽取了 名學(xué)生,其中安全意識為“很強”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比是 ;
(2)請將條形統(tǒng)計圖補充完整;
(3)該校有1800名學(xué)生,現(xiàn)要對安全意識為“淡薄”、“一般”的學(xué)生強化安全教育,根據(jù)調(diào)查結(jié)果,估計全校需要強化安全教育的學(xué)生約有 名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把小圓形場地的半徑增加5米得到大圓形場地,此時大圓形場地的面積是小圓形場地的4倍,設(shè)小圓形場地的半徑為x米,若要求出未知數(shù)x,則應(yīng)列出方程 (列出方程,不要求解方程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B是反比例函數(shù)y=圖象上兩點,BP⊥x軸,垂足為P.已知∠AOP=45°,OA=4, tan∠BOP=.
(1)求點A的坐標(biāo);
(2)連接AB,求四邊形AOPB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司購買一批玻璃杯和保溫杯,計劃用2000元購買玻璃杯,用2800元購買保溫杯.已知一個保溫杯比一個玻璃杯貴10元.該公司購買的玻璃杯與保溫杯的數(shù)量能相同嗎?
(1)根據(jù)題意,甲和乙兩同學(xué)都先假設(shè)該公司購買的玻璃杯與保溫杯的數(shù)量能相同,并分別列出的方程如下:=;-=10,根據(jù)兩位同學(xué)所列的方程,請你分別指出未知數(shù)x,y表示的意義:x表示 ;y表示 ;
(2)任選其中一個方程說明該公司購買的玻璃杯與保溫杯的數(shù)量能否相同.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com