【題目】下面是“作三角形一邊中線”的尺規(guī)作圖過(guò)程. 已知:△ABC(如圖1),求作:BC邊上的中線AD.
作法:如圖2,
(i)分別以點(diǎn)B,C為圓心,AC,AB長(zhǎng)為半徑作弧,兩弧相交于P點(diǎn);
(ii)作直線AP,AP與BC交于D點(diǎn).
所以線段AD就是所求作的中線.
請(qǐng)回答:該作圖的依據(jù)是 .
【答案】?jī)山M對(duì)邊分別相等的四邊形是平行四邊形,平行四邊形的對(duì)角線互相平分
【解析】解:由作法得BP=AC,CP=AB,則四邊形ABPC為平行四邊形, 所以BD=CD,即點(diǎn)D為BC的中點(diǎn),
所以AD為中線.
所以答案是兩組對(duì)邊分別相等的四邊形是平行四邊形,平行四邊形的對(duì)角線互相平分.
【考點(diǎn)精析】利用平行四邊形的判定與性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知若一直線過(guò)平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OM平分∠AOB,ON平分∠BOC.
(1)若∠AOB=90°,∠BOC=30°,則∠MON=_____;
(2)若∠AOB=α,∠BOC=β,其它條件不變,則∠MON=______;
(3)當(dāng)OC運(yùn)動(dòng)到∠AOB內(nèi)部時(shí),其余條件不變,請(qǐng)你畫(huà)出圖形并猜想∠MON與∠AOB、∠BOC的數(shù)量關(guān)系式,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN與∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過(guò)程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為( 。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊直角三角板DEF放置在△ABC上,三角板DEF的兩條直角邊DE、DF恰好分別經(jīng)過(guò)點(diǎn)B、C.△ABC中,∠A=50°,求∠DBA+∠DCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三個(gè)登山愛(ài)好者經(jīng)常相約去登山,今年1月甲參加了兩次登山活動(dòng).
(1)1月1日甲與乙同時(shí)開(kāi)始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,結(jié)果甲比乙早15分鐘到達(dá)頂峰.求甲的平均攀登速度是每分鐘多少米?
(2)1月6日甲與丙去攀登另一座h米高的山,甲保持第(1)問(wèn)中的速度不變,比丙晚出發(fā)0.5小時(shí),結(jié)果兩人同時(shí)到達(dá)頂峰,問(wèn)甲的平均攀登速度是丙的多少倍?(用含h的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D.
(1)求證:ED=EC;
(2)求證:∠ECD=∠EDC;
(3)求證:OE垂直平分CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣2m2x+2交y軸于A點(diǎn),交直線x=4于B點(diǎn).
(1)拋物線的對(duì)稱軸為x=(用含m的代數(shù)式表示);
(2)若AB∥x軸,求拋物線的表達(dá)式;
(3)記拋物線在A,B之間的部分為圖象G(包含A,B兩點(diǎn)),若對(duì)于圖象G上任意一點(diǎn)P(xp , yp),yp≤2,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD 和 BE 是△ABC 的兩條高,∠BCD=45°,BF=FC,BE與 DF、DC分別交于點(diǎn) G、H,∠ACD=∠CBE.
(1)證明:AB=BC;
(2)判斷 BH 與 AE 之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)結(jié)合已知條件,觀察圖形,你還能發(fā)現(xiàn)什么結(jié)論?請(qǐng)寫出兩個(gè)(不與前面結(jié)論相同).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com