【題目】如圖,正方形ABCD的邊長為5,點A的坐標為(﹣4,0),點By軸上,若反比例函數(shù)y=k≠0)的圖象過點C,則該反比例函數(shù)的表達式為_______

【答案】

【解析】解:如圖,過點CCEy軸于E,在正方形ABCD中,AB=BC,ABC=90°,∴∠ABO+CBE=90°,∵∠OAB+ABO=90°∴∠OAB=CBE,A的坐標為(﹣40),OA=4,AB=5OB= =3,在ABOBCE中,∵∠OAB=CBE,AOB=BEC,AB=BC∴△ABO≌△BCEAAS),OA=BE=4,CE=OB=3,OE=BEOB=43=1,C的坐標為(3,1),反比例函數(shù)k≠0)的圖象過點C,k=xy=3×1=3,反比例函數(shù)的表達式為.故答案為:

點睛:本題考查的是反比例函數(shù)圖象上點的坐標特點,涉及到正方形的性質,全等三角形的判定與性質,反比例函數(shù)圖象上的點的坐標特征,作輔助線構造出全等三角形并求出點D的坐標是解題的關鍵.

型】填空
束】
17

【題目】關于x的分式方程=1的解是正數(shù),則m的取值范圍是_____

【答案】m<1

【解析】試題分析:去分母得:2xmx-2,

解得:x=-m-2,

∵關于x的方程=1的解是正數(shù),

∴-m-2>0,

解得m<-2,

又∵x=-m-2≠2,

m≠-4,

m的取值范圍是:m<-2m≠-4.

故答案為:m<-2m≠-4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點,BE交AC于點F,連接DF.

(1)求證:∠BAC=∠DAC,∠AFD=∠CFE;

(2)若AB∥CD,試證明四邊形ABCD是菱形;

(3)在(2)的條件下,試確定E點的位置,使∠EFD=∠BCD,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形ABCD,AB=6cm,BC=4 cm,ECD中點.點PA點出發(fā),沿ABC的方向在矩形邊上勻速運動,速度為1 cm /s,運動到C點停止.設點P運動的時間為t s.(圖2為備用圖)

(1)當PAB上,t為何值時,△APE的面積是矩形ABCD面積的

(2)在整個運動過程中,t為何值時,△APE為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,某校組織八年級1000名學生參加漢字聽寫大賽.為了解學生整體聽寫能力,從中抽取部分學生的成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計分析,得到分數(shù)段在70.580.5的頻數(shù)是50所占百分比25%,則本次抽樣調查的樣本容量為_____.

【答案】200

【解析】試題分析:50÷25%=200,

所以本次抽樣調查的樣本容量是200.

故答案為:200.

型】填空
束】
13

【題目】已知P1x1,y1),P2x2,y2),P3x3,y3)是反比例函數(shù)的圖象上的三點,且x10x2x3,則y1y2,y3的大小關系是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.

(1)如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.
求證:中點四邊形EFGH是平行四邊形;
(2)如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了開展讀書月活動對學生最喜歡的圖書種類進行了一次抽樣調查,所有圖書分成四類:藝術、文學、科普、其他.隨機調查了該校m名學生(每名學生必選且只能選擇一類圖書)并將調查結果制成如下兩幅不完整的統(tǒng)計圖:

根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)m ,n

(2)扇形統(tǒng)計圖中,“藝術”所對應的扇形的圓心角度數(shù)是 度;

(3)請根據(jù)以上信息補全條形統(tǒng)計圖;

(4)根據(jù)抽樣調查的結果,請你估計該校1000名學生中有多少學生最喜歡科普類圖書.

【答案】 (1)m=50, n=30;(2)72度 (3)補圖見解析(4)300

【解析】試題分析:1)根據(jù)其他的人數(shù)和所占的百分比即可求得m的值,從而可以求得n的值;

2)根據(jù)扇形統(tǒng)計圖中的數(shù)據(jù)可以求得藝術所對應的扇形的圓心角度數(shù);

3)根據(jù)題意可以求得喜愛文學的人數(shù),從而可以將條形統(tǒng)計圖補充完整;

4)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以估計該校600名學生中有多少學生最喜歡科普類圖書.

試題解析:

解:(1m5÷10%50,n%15÷5030%

故答案為:50,30

2)由題意可得,

藝術所對應的扇形的圓心角度數(shù)是:360°×72°,

故答案為:72

3)文學有:501015520,

補全的條形統(tǒng)計圖如圖所示;

4)由題意可得,

600×180,

即該校600名學生中有180名學生最喜歡科普類圖書.

點睛:本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖、用樣本估計總體,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.

型】解答
束】
23

【題目】端午節(jié)前夕,小東的父母準備購買若干個粽子和咸鴨蛋(每個粽子的價格相同,每個咸鴨蛋的價格相同).已知粽子的價格比咸鴨蛋的價格貴1.5元,花35元購買粽子的個數(shù)與花20元購買咸鴨蛋的個數(shù)相同.粽子與咸鴨蛋的價格各是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正五邊形ABCDE放入某平面直角坐標系后,若頂點A,B,C,D的坐標分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標是(  )

A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為進一步了解某校七年級(2)班同學們的身體素質,體育老師對七年級(2)班的50名學生進行了一分鐘跳繩次數(shù)測試,以測試成績?yōu)闃颖,繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖,請結合兩種圖表完成下列問題:

(1)表中的a=   

(2)把頻數(shù)分布直方圖補充完整

(3)若七年級學生每分鐘跳繩的次數(shù)不小于120為合格,那么,這個七年級(2)班學生跳繩的合格率為多少?

查看答案和解析>>

同步練習冊答案