【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)與x軸交于點(diǎn)A(﹣5,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)若點(diǎn)E為x軸下方拋物線上的一動(dòng)點(diǎn),當(dāng)S△ABE=S△ABC時(shí),求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使∠BAP=∠CAE?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)y=x2+x﹣5;(2)E點(diǎn)坐標(biāo)為(﹣2,﹣5);(3)存在滿足條件的點(diǎn)P,其橫坐標(biāo)為或
.
【解析】
(1)把A、B兩點(diǎn)的坐標(biāo)代入,利用待定系數(shù)法可求得拋物線的解析式;(2)當(dāng)S△ABE=S△ABC時(shí),可知E點(diǎn)和C點(diǎn)的縱坐標(biāo)相同,可求得E點(diǎn)坐標(biāo);(3)在△CAE中,過E作ED⊥AC于點(diǎn)D,可求得ED和AD的長度,設(shè)出點(diǎn)P坐標(biāo),過P作PQ⊥x軸于點(diǎn)Q,由條件可知△EDA∽△PQA,利用相似三角形的對(duì)應(yīng)邊可得到關(guān)于P點(diǎn)坐標(biāo)的方程,可求得P點(diǎn)坐標(biāo).
(1)把A、B兩點(diǎn)坐標(biāo)代入解析式可得,,解得 ,
∴拋物線解析式為y=x2+x﹣5;
(2)在y=x2+x﹣5中,令x=0可得y=﹣5,
∴C(0,﹣5),
∵S△ABE=S△ABC,且E點(diǎn)在x軸下方,
∴E點(diǎn)縱坐標(biāo)和C點(diǎn)縱坐標(biāo)相同,
當(dāng)y=﹣5時(shí),代入可得x2+x=﹣5,解得x=﹣2或x=0(舍去),
∴E點(diǎn)坐標(biāo)為(﹣2,﹣5);
(3)假設(shè)存在滿足條件的P點(diǎn),其坐標(biāo)為(m,m2+m﹣5),
如圖,連接AP、CE、AE,過E作ED⊥AC于點(diǎn)D,過P作PQ⊥x軸于點(diǎn)Q,
則AQ=AO+OQ=5+m,PQ=|m2+m﹣5|,
在Rt△AOC中,OA=OC=5,則AC=,∠ACO=∠DCE=45°,
由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,
∴AD=AC﹣DC=﹣=4,
當(dāng)∠BAP=∠CAE時(shí),則△EDA∽△PQA,
∴,即=,
∴m2+m﹣5=(5+m)或m2+m﹣5=﹣(5+m),
當(dāng)m2+m﹣5=(5+m)時(shí),整理可得4m2﹣5m﹣75=0,解得m=或m=﹣5(與A點(diǎn)重合,舍去),
當(dāng)m2+m﹣5=﹣(5+m)時(shí),整理可得4m2+11m﹣45=0,解得m=或m=﹣5(與A點(diǎn)重合,舍去),
∴存在滿足條件的點(diǎn)P,其橫坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)用14500元購進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)與銷售價(jià)如表(二)所示:
類別 | 成本價(jià)(元/箱) | 銷售價(jià)(元/箱) |
甲 | 25 | 35 |
乙 | 35 | 48 |
求:(1)購進(jìn)甲、乙兩種礦泉水各多少箱?
(2)該商場(chǎng)售完這500箱礦泉水,可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,邊BC在x軸上,點(diǎn)E是對(duì)角線AC,BD的交點(diǎn),反比例函數(shù)y=的圖象經(jīng)過A,E兩點(diǎn),則k的值為( 。
A. 8B. 4C. 6D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,含30°和45°角的兩塊三角板ABC和DEF疊合在一起,邊BC與EF重合,BC=EF=12cm,點(diǎn)P為邊BC(EF)的中點(diǎn),現(xiàn)將三角板ABC繞點(diǎn)P按逆時(shí)針方向旋轉(zhuǎn)角度α(如圖2),設(shè)邊AB與EF相交于點(diǎn)Q,則當(dāng)a從0°到90°的變化過程中,點(diǎn)Q移動(dòng)的路徑長為_____(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對(duì)角線AC與BD的交點(diǎn),M是BC邊上的動(dòng)點(diǎn)(點(diǎn)M不與B,C重合),CN⊥DM,CN與AB交于點(diǎn)N,連接OM,ON,MN.下列四個(gè)結(jié)論:①△CNB≌△DMC;②△CON≌△DOM;③△OMN≌△OAD;④AN2+CM2=MN2;其中正確的結(jié)論是_____.(填寫所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價(jià)為8元/千克,投入市場(chǎng)銷售時(shí),調(diào)查市場(chǎng)行情,發(fā)現(xiàn)該蜜柚銷售不會(huì)虧本,且每天銷售量(千克)與銷售單價(jià)(元/千克)之間的函數(shù)關(guān)系如圖所示.
(1)求與的函數(shù)關(guān)系式,并寫出的取值范圍;
(2)當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷售獲得的利潤最大?最大利潤是多少?
(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤的方式進(jìn)行銷售,能否銷售完這批蜜柚?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)圖象的頂點(diǎn)為,對(duì)稱軸是直線,一次函數(shù)的圖象與軸交于點(diǎn),且與直線關(guān)于的對(duì)稱直線交于點(diǎn).
(1)點(diǎn)的坐標(biāo)是 ______;
(2)直線與直線交于點(diǎn),是線段上一點(diǎn)(不與點(diǎn)、重合),點(diǎn)的縱坐標(biāo)為.過點(diǎn)作直線與線段、分別交于點(diǎn),,使得與相似.
①當(dāng)時(shí),求的長;
②若對(duì)于每一個(gè)確定的的值,有且只有一個(gè)與相似,請(qǐng)直接寫出的取值范圍 ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣,某校為滿足學(xué)生的閱讀需求,欲購進(jìn)一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計(jì)圖(未完成),請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計(jì)圖1補(bǔ)充完整;
(3)圖2中“小說類”所在扇形的圓心角為 度;
(4)若該校共有學(xué)生2000人,估計(jì)該校喜歡“社科類”書籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,∠CAB=30°,AB=4.5cm.D是線段AB上的一個(gè)動(dòng)點(diǎn),連接CD,過點(diǎn)D作CD的垂線交CA于點(diǎn)E.設(shè)AD=xcm,CE=ycm.(當(dāng)點(diǎn)D與點(diǎn)A或點(diǎn)B重合時(shí),y的值為5.2)
探究函數(shù)y隨自變量x的變化而變化的規(guī)律.
(1)通過取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組對(duì)應(yīng)值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 |
y/cm | 5.2 | 4.8 | 4.4 | 4.0 | 3.8 | 3.6 | 3.5 | 3.6 | 5.2 |
(要求:補(bǔ)全表格,相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系xOy,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)CE=2AD時(shí),AD的長度約為 cm(結(jié)果保留一位小數(shù)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com