【題目】如圖,CA⊥AB,垂足為點A,AB=8,AC=4,射線BM⊥AB,垂足為點B,一動點E從A點出發(fā)以2厘米/秒的速度沿射線AN運動,點D為射線BM上一動點,隨著E點運動而運動,且始終保持ED=CB,當點E離開點A后,運動秒時,△DEB與△BCA全等.

【答案】0,2,6,8
【解析】解:①當E在線段AB上,AC=BE時,△ACB≌△BED, ∵AC=4,
∴BE=4,
∴AE=8﹣4=4,
∴點E的運動時間為4÷2=2(秒);
②當E在BN上,AC=BE時,
∵AC=4,
∴BE=4,
∴AE=8+4=12,
∴點E的運動時間為12÷2=6(秒);
③當E在線段AB上,AB=EB時,△ACB≌△BDE,
這時E在A點未動,因此時間為0秒;
④當E在BN上,AB=EB時,△ACB≌△BDE,
AE=8+8=16,
點E的運動時間為16÷2=8(秒),
所以答案是:0,2,6,8.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個正方形和兩個等邊三角形的位置如圖所示,若∠3=50°,則∠1+∠2=(
A.90°
B.100°
C.130°
D.180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的不等式3x﹣m≥5的解集如圖所示,則m的值等于( )

A.
B.﹣1
C.﹣5
D.﹣8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校學生對乒乓球、羽毛球、排球、籃球和足球五種球類運動項目的喜愛情況(每位同學必須且只能從中選擇一項),隨機選取了若干名學生進行抽樣調查,并將調查結果繪制成了不完整的統(tǒng)計圖.

(1)參加調查的學生一共有名,圖2中乒乓球所在扇形的圓心角為°;
(2)在圖1中補全條形統(tǒng)計圖(標上相應數(shù)據(jù));
(3)若該校共有2000名同學,請根據(jù)抽樣調查數(shù)據(jù)估計該校同學中喜歡足球運動的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,點P在BA的延長線上,弦CDAB,垂足為E,且=PEPO.

(1)求證:PC是O的切線.

(2)若OE:EA=1:2,PA=6,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題
(1)如圖,MN∥EF,GH∥EF,∠CAB=90°,∠1=70°,求:∠ABF的度數(shù).

(2)計算: + +| ﹣2|﹣2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:解不等式(x+2)(x﹣3)>0,根據(jù)有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,可以轉化為不等式組求解.
解:(x+2)(x﹣3)>0,轉化為① 或② ,解不等式組①,得x>3,解不等式組②,得x<﹣2.
∴原不等式(x+2)(x﹣3)>0的解集是x>3或x<﹣2.
請你仿照上面的方法,解下列不等式
(1)(x+7)(2x+8)>0
(2)(3x﹣9)(x+11)<0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,觀測點A、旗桿DE的底端D、某樓房CB的底端C三點在一條直線上,從點A處測得樓頂端B的仰角為22°,此時點E恰好在AB上,從點D處測得樓頂端B的仰角為38.5°.已知旗桿DE的高度為12米,試求樓房CB的高度.(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學思考:

(1)如圖1,已知AB∥CD,探究下面圖形中∠APC和∠PAB、∠PCD的關系,并證明你的結論
(2)①如圖2,已知AA1∥BA1 , 請你猜想∠A1 , ∠B1 , ∠B2 , ∠A2、∠A3的關系,并證明你的猜想;
②如圖3,已知AA1∥BAn , 直接寫出∠A1 , ∠B1 , ∠B2 , ∠A2、…∠Bn1、∠An的關系
(3)①如圖4所示,若AB∥EF,用含α,β,γ的式子表示x,應為
A.180°+α+β﹣γ B.180°﹣α﹣γ+β C.β+γ﹣α D.α+β+γ
②如圖5,AB∥CD,且∠AFE=40°,∠FGH=90°,∠HMN=30°,∠CNP=50°,請你根據(jù)上述結論直接寫出∠GHM的度數(shù)是

查看答案和解析>>

同步練習冊答案