【題目】如圖,已知一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(﹣1,m)、B(n,﹣1)兩點(diǎn).
(1)求出A、B兩點(diǎn)的坐標(biāo);
(2)求出這個(gè)一次函數(shù)的表達(dá)式;
(3)根據(jù)圖象,寫出使一次函數(shù)值大于反比例函數(shù)值的x的范圍.
【答案】(1)A(﹣1,2),B(2,﹣1)(2)y=﹣x+1(3)x<﹣1或0<x<2
【解析】試題分析:(1)根據(jù)反比例函數(shù)的解析式,代入即可求出A、B的坐標(biāo);
(2)利用待定系數(shù)法求出一次函數(shù)的解析式;
(3)根據(jù)圖像求使正比例函數(shù)值大于反比例函數(shù)值的x的范圍.
試題解析:(1)把A(﹣1,m),B(n,﹣1)代入y=得:m=,﹣1=,
解得:m=2,n=2,
∴A(﹣1,2),B(2,﹣1);
(2)∵把A、B的坐標(biāo)代入y=kx+b得:
,
解得:k=﹣1,b=1,
∴這個(gè)一次函數(shù)的表達(dá)式是y=﹣x+1;
(3)∵A(﹣1,2),B(2,﹣1),
∴使一次函數(shù)值大于反比例函數(shù)值的x的范圍是:x<﹣1或0<x<2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以C為直角頂點(diǎn)的兩個(gè)等腰直角△CAB和△CDG,E為AB的中點(diǎn),F為DG的中點(diǎn).
(1)如圖1,點(diǎn)A、B分別在邊CD,CG上,則EF與AD的數(shù)量關(guān)系是______________;
(2)如圖2,點(diǎn)A、B不在邊CD、CG上,(1)中EF與AD的關(guān)系還成立嗎?請證明你的結(jié)論;
(3)如圖3,若A、B、G在同一直線上,且A、C、B、F在同一圓上,直接寫出△CDG與△CAB面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+5與x軸交于點(diǎn)A(1,0)和點(diǎn)B(5,0),頂點(diǎn)為M.點(diǎn)C在x軸的負(fù)半軸上,且AC=AB,點(diǎn)D的坐標(biāo)為(0,3),直線l經(jīng)過點(diǎn)C、D.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P是直線l在第三象限上的點(diǎn),聯(lián)結(jié)AP,且線段CP是線段CA、CB的比例中項(xiàng),
求tan∠CPA的值;
(3)在(2)的條件下,聯(lián)結(jié)AM、BM,在直線PM上是否存在點(diǎn)E,使得∠AEM=∠AMB.若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在紙面上有一數(shù)軸(如圖1),折疊紙面.
(1)若1表示的點(diǎn)與﹣1表示的點(diǎn)重合,則﹣4表示的點(diǎn)與 表示的點(diǎn)重合;
(2)若﹣2表示的點(diǎn)與8表示的點(diǎn)重合,回答以下問題:
①16表示的點(diǎn)與 表示的點(diǎn)重合;
②如圖2,若數(shù)軸上A、B兩點(diǎn)之間的距離為2018(A在B的左側(cè)),且A、B兩點(diǎn)經(jīng)折疊后重合,則A、B兩點(diǎn)表示的數(shù)分別是 、 .
(3)如圖3,若m和n表示的點(diǎn)C和點(diǎn)D經(jīng)折疊后重合,(m>n>0),現(xiàn)數(shù)軸上P、Q兩點(diǎn)之間的距離為a(P在Q的左側(cè)),且P、Q兩點(diǎn)經(jīng)折疊后重合,求P、Q兩點(diǎn)表示的數(shù)分別是多少?(用含m,n,a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A,B,C三點(diǎn)分別為(4,0),(4,4),(0,4),點(diǎn)P在x軸上,點(diǎn)D在直線AB上,若DA=1,CP⊥DP,垂足為P,則點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“作一個(gè)角等于30°”的尺規(guī)作圖過程.
作法:如圖,(1)作射線AD;
(2)在射線AD上任意取一點(diǎn)O(點(diǎn)O不與點(diǎn)A重合);
(3)以點(diǎn)O為圓心,OA為半徑作⊙O,交射線AD于點(diǎn)B;
(4)以點(diǎn)B為圓心,OB為半徑作弧,交⊙O于點(diǎn)C;
(5)作射線AC.
∠DAC即為所求作的30°角.
請回答:該尺規(guī)作圖的依據(jù)是_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是以AB為直徑的⊙O上一動(dòng)點(diǎn),過點(diǎn)C作⊙O直徑CD,過點(diǎn)B作BE⊥CD于點(diǎn)E.已知AB=6cm,設(shè)弦AC的長為xcm,B,E兩點(diǎn)間的距離為ycm(當(dāng)點(diǎn)C與點(diǎn)A或點(diǎn)B重合時(shí),y的值為0).
小冬根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小冬的探究過程,請補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如下表:
經(jīng)測量m的值是(保留一位小數(shù)).
(2)建立平面直角坐標(biāo)系,描出表格中所有各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)在(2)的條件下,當(dāng)函數(shù)圖象與直線相交時(shí)(原點(diǎn)除外),∠BAC的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D為BC中點(diǎn),DE⊥AB,垂足為點(diǎn)E,過點(diǎn)B作BF∥AC交DE的延長線于點(diǎn)F,連接CF、AF、AD,AD與CF交于點(diǎn)G.
(1)求證:△ACD≌△CBF;
(2)AD與CF的關(guān)系是 ;
(3)求證:△ACF是等腰三角形;
(4)△ACF可能是等邊三角形嗎? (填“可能”或“不可能”).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com