【題目】如圖,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,點P、Q分別從B、C兩點同時出發(fā),其中點P沿BC向終點C運動,速度為1cm/s;點Q沿CA、AB向終點B運動,速度為2cm/s,設(shè)它們運動的時間為x(s).
(1)求x為何值時,PQ⊥AC;
(2)設(shè)△PQD的面積為y(cm2),當(dāng)0<x<2時,求y與x的函數(shù)關(guān)系式;
(3)當(dāng)0<x<2時,求證:AD平分△PQD的面積;
(4)探索以PQ為直徑的圓與AC的位置關(guān)系,請寫出相應(yīng)位置關(guān)系的x的取值范圍(不要求寫出過程).
【答案】(1)x=;(2)y=﹣x2+x;(3)證明見解析;(4)當(dāng)0≤x<或<x<或<x≤4時,以PQ為直徑的圓與AC相交.
【解析】
(1)若使PQ⊥AC,則根據(jù)路程=速度×時間表示出CP和CQ的長,再根據(jù)30度的直角三角形的性質(zhì)列方程求解;
(2)首先畫出符合題意的圖形,再根據(jù)路程=速度×時間表示出BP,CQ的長,根據(jù)等邊三角形的三線合一求得PD的長,根據(jù)30度的直角三角形的性質(zhì)求得PD邊上的高,再根據(jù)面積公式進(jìn)行求解;
(3)根據(jù)三角形的面積公式,要證明AD平分△PQD的面積,只需證明O是PQ的中點.根據(jù)題意可以證明BP=CN,則PD=DN,再根據(jù)平行線等分線段定理即可證明;
(4)根據(jù)(1)中求得的值即可分情況進(jìn)行討論.
(1)當(dāng)Q在AB上時,顯然PQ不垂直于AC,
當(dāng)Q在AC上時,由題意得,BP=x,CQ=2x,PC=4﹣x;
∵AB=BC=CA=4,
∴∠C=60°;
若PQ⊥AC,則有∠QPC=30°,
∴PC=2CQ,
∴4﹣x=2×2x,
∴x=;
(2)y=﹣x2+x,
如圖所示,
當(dāng)0<x<2時,P在BD上,Q在AC上,過點Q作QN⊥BC于N;
∵∠C=60°,QC=2x,
∴QN=QC×sin60°=x;
∵AB=AC,AD⊥BC,
∴BD=CD=BC=2,
∴DP=2﹣x,
∴y=PDQN=(2﹣x)x=﹣x2+x;
(3)當(dāng)0<x<2時,
在Rt△QNC中,QC=2x,∠C=60°;
∴NC=x,
∴BP=NC,
∵BD=CD,
∴DP=DN;
∵AD⊥BC,QN⊥BC,
∴AD∥QN,
∴OP=OQ,
∴S△PDO=S△DQO,
∴AD平分△PQD的面積;
(4)顯然,不存在x的值,使得以PQ為直徑的圓與AC相離,
由(1)可知,當(dāng)x=時,以PQ為直徑的圓與AC相切;
當(dāng)點Q在AB上時,
8﹣2x=,
解得x=,
故當(dāng)x=或時,以PQ為直徑的圓與AC相切,
當(dāng)0≤x<或<x<或<x≤4時,以PQ為直徑的圓與AC相交.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=(x+m)2+m與直線y=x相交于E,C兩點(點E在點C的左邊),拋物線與x軸交
于A,B兩點(點A在點B的左邊).△ABC的外接圓⊙H與直線y=-x相交于點D.
⑴ 若拋物線與y軸交點坐標(biāo)為(0,2),求m的值;
⑵ 求證:⊙H與直線y=1相切;
⑶ 若DE=2EC,求⊙H的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為A(0,a),B(b,a),且a、b滿足(a﹣2)2+|b﹣4|=0,現(xiàn)同時將點A,B分別向下平移2個單位,再向左平移1個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD,AB.
(1)求點C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點M,連接MC,MD,使S△MCD=S四邊形ABDC?若存在這樣一點,求出點M的坐標(biāo),若不存在,試說明理由;
(3)點P是直線BD上的一個動點,連接PA,PO,當(dāng)點P在BD上移動時(不與B,D重合),直接寫出∠BAP、∠DOP、∠APO之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC ∠ACB ,BD 、CD 分別平分△ABC 的內(nèi)角 ∠ABC 、外角 ∠ACP ,BE平分外角 ∠MBC 交 DC 的延長線于點 E ,以下結(jié)論:①∠BDE ∠BAC ;② DB⊥BE ;③∠BDC ∠ACB 90 ;④∠BAC 2∠BEC 180 .其中正確的結(jié)論有( )
A.1 個B.2 個C.3 個D.4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰直角三角形ABC,AB=AC,∠BAC=∠BDC=90°,
(1)若∠DBA=20°,則∠ACD=______°;
(2)連接AD,則∠ADB=______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知命題“等腰三角形兩腰上的高線長相等”
(1)請寫出該命題的逆命題;
(2)判斷(1)中命題的真假,并畫出圖形,補充已知,求證,及證明過程.
圖形:
已知:在△ABC中,CD⊥AB,BE⊥AC,且______.
求證:______.
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料并把解答過程補充完整.
問題:在關(guān)于x,y的二元一次方程組中,x>1,y<0,求a的取值范圍.
在關(guān)于x,y的二元一次方程組中,利用參數(shù)a的代數(shù)式表示x,y,然后根據(jù)x>1,y<0列出關(guān)于參數(shù)a的不等式組即可求得a的取值范圍.
解:由,解得,又因為x>1,y<0,所以,解得________.
請你按照上述方法,完成下列問題:
已知x-y=4,x>3,y<1,求x+y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B、C在數(shù)軸上分別表示的數(shù)為-10,2,8,點D是BC中點,點E是AD中點.
(1)求EB的長;
(2)若動點P從點A出發(fā),以1cm/s的速度向點C運動,達(dá)到點C停止運動,點Q從點C出發(fā),以2cm/s的速度向點A運動,到達(dá)點A停止運動,若運動時間為ts,當(dāng)t為何值時,PQ=3cm?
(3)點A,B,C開始在數(shù)軸上運動,若點A以1cm/s的速度向左運動,同時,點B和點C分別以4cm/s和9cm/s的速度向右運動,假設(shè)t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,請問:AB-BC的值是否隨時間t的變化而變化?若變化,請說明理由;若不變,請求其常數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2a,E為BC邊的中點, 的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點F,則E、F間的距離為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com