如圖,正方形ABCD中,E為CD的中點(diǎn),EF⊥AE,交BC于點(diǎn)F,則∠1與∠2的大小關(guān)系為( )
A.∠1>∠2
B.∠1<∠2
C.∠1=∠2
D.無(wú)法確定
【答案】分析:易證△ADE∽△ECF,求得CF的長(zhǎng),可得根據(jù)勾股定理即可求得AE、EF的長(zhǎng),即可判定△ADE∽△AEF,即可解題.
解答:解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,
∴∠DAE=∠CEF,
∵∠ADE=∠ECF=90°,
∴△ADE∽△ECF,且相似比為2,
∴AE=2EF,AD=2DE,
又∵∠ADE=∠AEF,
∴△ADE∽△AEF,
∴∠1=∠2.
點(diǎn)評(píng):本題考查了相似三角形的判定,相似三角形對(duì)應(yīng)邊比值相等的性質(zhì),相似三角形對(duì)應(yīng)角相等的性質(zhì),本題中求證△ADE∽△AEF是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案