【題目】用一個直徑為10cm的玻璃球和一個圓錐形的牛皮紙紙帽制作一個不倒翁玩具,不倒翁的軸截面如圖所示,圓錐的母線AB與⊙O相切于點B,不倒翁的頂點A到桌面L的最大距離是18cm.若將圓錐形紙帽表面全涂上顏色,則涂色部分的面積為cm2 .
科目:初中數(shù)學 來源: 題型:
【題目】( 本小題滿分10分)如圖,已知:在平行四邊形ABCD中,點E、F、G、H分別在邊AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求證:
⑴△AEH≌△CGF;
⑵四邊形EFGH是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場經(jīng)營A種品牌的玩具,購進時間的單價是30元,但據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設該種品牌玩具的銷售單價為x元(x>40),請用含x的代數(shù)式表示該玩具的銷售量;
(2)若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于450件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?
(3)該商場計劃將(2)中所得的利潤的一部分資金采購一批B種玩具并轉(zhuǎn)手出售,根據(jù)市場調(diào)查并準備兩種方案,方案①:如果月初出售,可獲利15%,并可用本和利再投資C種玩具,到月末又可獲利10%;方案②:如果只到月末出售可直接獲利30%,但要另支付他庫保管費350元,請問商場如何使用這筆資金,采用哪種方案獲利較多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,EG、EM、FM分別平分∠AEF,∠BEF,∠EFD,則圖中與∠DFM相等的角(不含它本身)的個數(shù)為( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,CE、BE的交點為E,現(xiàn)作如下操作:
第一次操作,分別作∠ABE和∠DCE的平分線,交點為E1,
第二次操作,分別作∠ABE1和∠DCE1的平分線,交點為E2,
第三次操作,分別作∠ABE2和∠DCE2的平分線,交點為E3,…,
第n次操作,分別作∠ABEn﹣1和∠DCEn﹣1的平分線,交點為En.
若∠En=1度,那∠BEC等于 度
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年5月,“一帶一路”國際合作高峰論壇在中國北京成功召開. 會議期間為方便市民出行,某路公交車每天比原來的運行增加30車次. 經(jīng)調(diào)研得知,原來這路公交車平均每天共運送乘客5600人,高峰論壇期間這路公交車平均每天共運送乘客8000人,且平均每車次運送乘客與原來的數(shù)量基本相同,問高峰論壇期間這路公交車每天運行多少車次?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【問題情境】
在△ABC中,AB=AC,點P為BC所在直線上的任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點C作CF⊥AB,垂足為F.當P在BC邊上時(如圖1),求證:PD+PE=CF.
圖① 圖② 圖③
證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.(不要證明)
【變式探究】
當點P在CB延長線上時,其余條件不變(如圖3).試探索PD、PE、CF之間的數(shù)量關系并說明理由.
請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:
【結(jié)論運用】
如圖4,將長方形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;
【遷移拓展】
在直角坐標系中.直線l1:y=與直線l2:y=2x+4相交于點A,直線l1、l2與x軸分別交于點B、點C.點P是直線l2上一個動點,若點P到直線l1的距離為1.求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com