【題目】已知:在四邊形中,對(duì)角線相交于點(diǎn),且,作,垂足為點(diǎn),與交于點(diǎn),.
(1)如圖中的圖1,求證:;
(2)如圖中的圖2,是的中點(diǎn),若,,在不添加任何輔助線的情況下,請(qǐng)找出圖中的四個(gè)三角形,使得每個(gè)三角形的面積都等于面積的倍,并說明理由.
【答案】(1)見解析;(2),見解析.
【解析】
(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根據(jù)∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;
(2)設(shè)DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,據(jù)此知S△ADC=2a2=2S△ADE,證△ADE≌△BGE得BE=AE=2a,再分別求出S△ABE、S△BCE、S△BHG,從而得出答案.
解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,
∴∠ADE=∠CGF,
∵AC⊥BD、BF⊥CD,
∴∠ADE+∠DAE=∠CGF+∠GCF,
∴∠DAE=∠GCF,
∴AD=CD;
設(shè),則,,
,
是的中線,
,
,
,
則
在和中,
,
,
綜上,面積等于△ADE面積的倍的三角形有:△ACD、△ABE、△BCE、△BHG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究同一平面直角坐標(biāo)系中系數(shù)互為倒數(shù)的正、反比例函數(shù)與(k≠0)的圖象性質(zhì).
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)與(k≠0),當(dāng)k>0時(shí)的圖象性質(zhì)進(jìn)行了探究.
下面是小明的探究過程:
(1)如圖所示,設(shè)函數(shù)與圖象的交點(diǎn)為A、B,已知A點(diǎn)的坐標(biāo)為(﹣k,﹣1),則B點(diǎn)的坐標(biāo)為 ;
(2)若點(diǎn)P為第一象限內(nèi)雙曲線上不同于點(diǎn)B的任意一點(diǎn).
①設(shè)直線PA交x軸于點(diǎn)M,直線PB交x軸于點(diǎn)N.求證:PM=PN.
證明過程如下,設(shè)P(m,),直線PA的解析式為y=ax+b(a≠0).
則,解得:,
∴直線PA的解析式為 .
請(qǐng)你把上面的解答過程補(bǔ)充完整,并完成剩余的證明.
②當(dāng)P點(diǎn)坐標(biāo)為(1,k)(k≠1)時(shí),判斷△PAB的形狀,并用k表示出△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市正在創(chuàng)建“全國文明城市”,光明學(xué)校擬舉辦“創(chuàng)文知識(shí)”搶答案,欲購買兩種獎(jiǎng)品以搶答者.如果購買種25件,種20件,共需480元;如果購買種15件,種25件,共需340元.
(1)兩種獎(jiǎng)品每件各多少元?
(2)現(xiàn)要購買兩種獎(jiǎng)品共100件,總費(fèi)用不超過1120元,那么最多能購買種獎(jiǎng)品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ΔABC中,CD是AB邊上的高,AC=8,∠ACD=30°,tan∠ACB= ,點(diǎn)P為CD上一動(dòng)點(diǎn),當(dāng)BP+CP最小時(shí),DP=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E是矩形外一點(diǎn),,,,連接AE交BD于點(diǎn)F、連接CF.
求證:四邊形BECO是菱形;
填空:若,則線段CF的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)興趣小組活動(dòng)中,小明進(jìn)行數(shù)學(xué)探究活動(dòng),將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖1位置放置,AD與AE在同一直線上,AB與AG在同一直線上.連接DG,BE,易得DG=BE且DG⊥BE(不需要說明理由)
(1)如圖2,小明將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為(30﹤﹤180)
①連接DG,BE,求證:DG=BE且DG⊥BE;
②在旋轉(zhuǎn)過程中,如圖3,連接BG,GE,ED,DB,求出四邊形BGED面積的最大值.
(2)如圖4,分別取BG,GE,ED,DB的中點(diǎn)M,N,P,Q,連接MN,NP,PQ,QM,則四邊形MNPQ的形狀為 ,四邊形MNPQ面積的最大值是 ,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸交于A(-1,0),B(5,0)兩點(diǎn),直線y=-x+3與y軸交于點(diǎn)C,,與x軸交于點(diǎn)D.點(diǎn)P是x軸上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為m。
(1)求拋物線的解析式;(2)若PE=5EF,求m的值;(3)若點(diǎn)E′是點(diǎn)E關(guān)于直線PC的對(duì)稱點(diǎn)、是否存在點(diǎn)P,使點(diǎn)E/落在y軸上?若存在,請(qǐng)直接寫出相應(yīng)的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,,相交于點(diǎn),與相交于點(diǎn),,為的平分線,為的平分線。
(1)若,求的大。
(2)若,求的大小。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com