【題目】某市正在創(chuàng)建全國文明城市,光明學校擬舉辦創(chuàng)文知識搶答案,欲購買兩種獎品以搶答者.如果購買25件,20件,共需480元;如果購買15件,25件,共需340.

1兩種獎品每件各多少元?

2)現(xiàn)要購買兩種獎品共100件,總費用不超過1120元,那么最多能購買種獎品多少件?

【答案】1A種獎品每件16元,B種獎品每件4;(2) 60

【解析】

1)設(shè)A種獎品每件x元,B種獎品每件y元,根據(jù)如果購買A25件,B20件,共需480元;如果購買A15件,B25件,共需340,即可得出關(guān)于xy的二元一次方程組,解之即可得出結(jié)論;
2)設(shè)A種獎品購買m件,則B種獎品購買(100-m)件,根據(jù)總價=單價×購買數(shù)量結(jié)合總費用不超過1120元,即可得出關(guān)于m的一元一次不等式,解之取其中最大的整數(shù)即可得出結(jié)論.

解:(1)設(shè)種獎品每件元,種獎品每件

根據(jù)題意,得

解得

答:A種獎品每件16元,B種獎品每件4.

2)設(shè)種獎品購買件,種獎品購買

根據(jù)題意,得

解得

種獎品最多購買60

答:A種獎品最多購買60.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為1,直線CD經(jīng)過圓心O,交⊙OC、D兩點,直徑ABCD,點M是直線CD上異于點CO、D的一個動點,AM所在的直線交于⊙O于點N,點P是直線CD上另一點,且PM=PN

1)當點M在⊙O內(nèi)部,如圖一,試判斷PN與⊙O的關(guān)系,并寫出證明過程;

2)當點M在⊙O外部,如圖二,其它條件不變時,(1)的結(jié)論是否還成立?請說明理由;

3)當點M在⊙O外部,如圖三,∠AMO=15°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=k0)經(jīng)過邊OB的中點CAE的中點D.已知等邊△OAB的邊長為4

(1)求該雙曲線所表示的函數(shù)解析式;

(2)求等邊△AEF的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖像與x軸交于AB兩點,與y軸交于C點,且對稱軸為直線x=1,點B坐標為(-1,0).則下面的四個結(jié)論:①2a+b=0;②4a-2b+c<0;③ac>0;④當y<0時,x<-1或x>3.其中正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC中,AB9,NAB上一點,且AN3BC的高線ADBC于點D,MAD上的動點,連結(jié)BM,MN,則BM+MN的最小值是

A. B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個小方格都是邊長為1的正方形,ABC的三個頂點都在格點上,結(jié)合所給的平面直角坐標系解答下列問題:

1ABC的面積為   

2)將ABC繞原點O 旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后的A1B1C1;

3)將ABC向右平移4個單位長度,畫出平移后的A2B2C2;

4A1B1C1A2B2C2成中心對稱嗎?若是,請直接寫出對稱中心的坐標:   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓E是三角形ABC的外接圓, BAC=45°,AOBCO,且BO=2,CO=3,分別以BC、AO所在直線建立x.

1)求三角形ABC的外接圓直徑;

2)求過ABC三點的拋物線的解析式;

3)設(shè)P是(2)中拋物線上的一個動點,且三角形AOP為直角三角形,則這樣的點P有幾個?(只需寫出個數(shù),無需解答過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在四邊形中,對角線相交于點,且,作,垂足為點,交于點,.

1)如圖中的圖1,求證:

2)如圖中的圖2,的中點,若,在不添加任何輔助線的情況下,請找出圖中的四個三角形,使得每個三角形的面積都等于面積的倍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,2)且與x軸交點的橫坐標分別為x1,x2,其中﹣1<x1<0.1<x2<2.下列結(jié)論:4a+2b+c<0;2a+b<0;b2+8a>4ac;

a<﹣1;其中結(jié)論正確的有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習冊答案