某市政府大力扶持大學(xué)生創(chuàng)業(yè),李明在政府的扶持下投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=-10x+500.
(1)設(shè)李明每月獲得利潤(rùn)為w(元),當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(2)如果李明想要每月獲得2000元的利潤(rùn),那么銷(xiāo)售單價(jià)應(yīng)定為多少元?
(3)根據(jù)物價(jià)部門(mén)規(guī)定,這種護(hù)眼臺(tái)燈的銷(xiāo)售單價(jià)不得高于32元,如果李明想要每月獲得的利潤(rùn)不低于2000元,那么他每月的成本最少需要多少元?
(成本=進(jìn)價(jià)×銷(xiāo)售量)
分析:(1)由題意得,每月銷(xiāo)售量與銷(xiāo)售單價(jià)之間的關(guān)系可近似看作一次函數(shù),利潤(rùn)=(定價(jià)-進(jìn)價(jià))×銷(xiāo)售量,從而列出關(guān)系式;(2)令w=2000,然后解一元二次方程,從而求出銷(xiāo)售單價(jià);(3)根據(jù)拋物線的性質(zhì)和圖象,求出每月的成本.
解答:解:(1)由題意,得:w=(x-20)•y,
=(x-20)•(-10x+500)=-10x
2+700x-10000,
x=-=35,
答:當(dāng)銷(xiāo)售單價(jià)定為35元時(shí),每月可獲得最大利潤(rùn).
(2)由題意,得:-10x
2+700x-10000=2000,
解這個(gè)方程得:x
1=30,x
2=40,
答:李明想要每月獲得2000元的利潤(rùn),銷(xiāo)售單價(jià)應(yīng)定為30元或40元.
(3)∵a=-10<0,
∴拋物線開(kāi)口向下,
∴當(dāng)30≤x≤40時(shí),w≥2000,
∵x≤32,
∴當(dāng)30≤x≤32時(shí),w≥2000,
設(shè)成本為P(元),由題意,得:P=20(-10x+500)=-200x+10000,
∵a=-200<0,
∴P隨x的增大而減小,
∴當(dāng)x=32時(shí),P
最小=3600,
答:想要每月獲得的利潤(rùn)不低于2000元,每月的成本最少為3600元.
點(diǎn)評(píng):此題考查二次函數(shù)的性質(zhì)及其應(yīng)用,還考查拋物線的基本性質(zhì),另外將實(shí)際問(wèn)題轉(zhuǎn)化為求函數(shù)最值問(wèn)題,從而來(lái)解決實(shí)際問(wèn)題.