【題目】在△ABC中,AB=AC,BC=12E為邊AC的中點,

(1)如圖1,過點EEH⊥BC,垂足為點H,求線段CH的長;

(2)作線段BE的垂直平分線分別交邊BC、BE、AB于點D、OF.

①如圖2,當∠BAC=90°時,求BD的長;

②如圖3,設(shè)tan∠ACB=x,BD=y,求yx之間的函數(shù)表達式和tan∠ACB的最大值.

【答案】(1)3(2)5(3)①

【解析】試題分析:(1)AAGBCBC于點G,則EHAG,由等腰三角形的性質(zhì)得CG=6,再由EAC中點可得HCG的中點.

2過點E于點H,設(shè)RtEDH中可得,解方程求出x的值;由 ,可得, ,在中,根據(jù)勾股定理列出關(guān)系式,然后整理可得yx之間的函數(shù)表達式;求tan∠ACB的最大值有兩種方法一是利用正切的增減性,二是利用數(shù)形結(jié)合.

解:(1)點A作AG⊥BC交BC于點G.

,

∵E為AC中點,EH∥AG,

∴H為CG的中點,∴CH=3,

⑵①過點E作于點H,

∵△ABC是等腰直角三角形,則CH=EH=3,

設(shè),則 ,

Rt△EDH中, ,

解之得, ,

即BD=5,

②∵

, ,

中,

,

方法一:由得,

當y有最大值時,x有最大值.即tan∠ACB有最大值.

∴當y=12時, (負的舍去),

∴tan∠ACB最大值為

或方法二:當點D與點C重合時,tan∠ACB最大,

.

BC邊的高為,

此時tan∠ACB=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC 中,ABAC,D 是直線 BC 上一點(不與點 BC 重合),以 AD 為一邊在 AD的右側(cè)作△ADE,ADAE,∠DAE=∠BAC,連接 CE.

1)如圖 1,當點 D 在線段 BC 上時,求證:ABD≌△ACE;

2)如圖 2,當點 D 在線段 BC 上時,如果∠BAC90°,求∠BCE 的度數(shù);

3)如圖 3,若∠BAC=α,∠BCE=β.D 在線段 CB 的延長線上時,則α、β之間有怎樣 的數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標系中,O為菱形ABCD的對稱中心,已知C2,0),D0﹣1),N為線段CD上一點(不與CD重合).

1)求以C為頂點,且經(jīng)過點D的拋物線解析式;

2)設(shè)N關(guān)于BD的對稱點為N1,N關(guān)于BC的對稱點為N2,求證:△N1BN2∽△ABC;

3)求(2)中N1N2的最小值;

4)過點Ny軸的平行線交(1)中的拋物線于點P,點Q為直線AB上的一個動點,且∠PQA=∠BAC,求當PQ最小時點Q坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為4,ADBC邊上的中線FAD邊上的動點,EAC邊上一點AE2,EFCF取得最小值時,∠ECF的度數(shù)為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y軸于點A,交直線x=6于點B.

1填空:拋物線的對稱軸為x=_________,點B的縱坐標為__________(用含a的代數(shù)式表示);

2若直線ABx軸正方向所夾的角為45°時,拋物線在x軸上方,求的值;

3記拋物線在A、B之間的部分為圖像G(包含A、B兩點),若對于圖像G上任意一點,總有≤3,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=54°∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EFEBC上,FAC上)折疊,點C與點O恰好重合,則∠OEC   度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從A地到B地的公路需經(jīng)過C地,圖中AC=10千米,∠CAB=25°,CBA=37°,因城市規(guī)劃的需要,將在A、B兩地之間修建一條筆直的公路.

(1)求改直的公路AB的長;

(2)問公路改直后比原來縮短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,A=30°,BD是∠ABC的平分線,CD=5cm,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1所示,ABC中,∠ACB的角平分線CF與∠EAC的角平分線AD的反向延長線交于點F;

①若∠B90°則∠F   ;

②若∠Ba,求∠F的度數(shù)(用a表示);

2)如圖2所示,若點GCB延長線上任意一動點,連接AG,∠AGB與∠GAB的角平分線交于點H,隨著點G的運動,∠F+H的值是否變化?若變化,請說明理由;若不變,請求出其值.

查看答案和解析>>

同步練習(xí)冊答案