【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC為 度.
【答案】108.
【解析】
如圖,連接OB、OC,
∵∠BAC=54°,AO為∠BAC的平分線,
∴∠BAO=∠BAC=×54°=27°.
又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°.
∵DO是AB的垂直平分線,∴OA=OB.
∴∠ABO=∠BAO=27°.∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°.
∵DO是AB的垂直平分線,AO為∠BAC的平分線,
∴點(diǎn)O是△ABC的外心.∴OB=OC.∴∠OCB=∠OBC=36°.
∵將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,∴OE=CE.
∴∠COE=∠OCB=36°.
在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一個智能機(jī)器人接到如下指令:從原點(diǎn)O出發(fā),按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,…,第n次移動到An.則△OA2A2018的面積是( 。
A. 504m2 B. m2 C. m2 D. 1009m2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù): .
(1)設(shè)李明每月獲得利潤為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價(jià)應(yīng)定為多少元?
(3)根據(jù)物價(jià)部門規(guī)定,這種護(hù)眼臺燈的銷售單價(jià)不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下四個結(jié)論:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中結(jié)論正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,BC=12,E為邊AC的中點(diǎn),
(1)如圖1,過點(diǎn)E作EH⊥BC,垂足為點(diǎn)H,求線段CH的長;
(2)作線段BE的垂直平分線分別交邊BC、BE、AB于點(diǎn)D、O、F.
①如圖2,當(dāng)∠BAC=90°時(shí),求BD的長;
②如圖3,設(shè)tan∠ACB=x,BD=y,求y與x之間的函數(shù)表達(dá)式和tan∠ACB的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn) A(a,6),B(4,b),
(1)若 a,b 滿足 (a b 5)2 0 ,
①求點(diǎn) A,B 的坐標(biāo);
②點(diǎn) D 在第一象限,且點(diǎn) D 在直線 AB 上,作 DC⊥x 軸于點(diǎn) C,延長 DC 到 P 使 得 PC=DC,若△PAB 的面積為 10,求 P 點(diǎn)的坐標(biāo);
(2)如圖,將線段 AB 平移到 CD,且點(diǎn) C 在 x 軸負(fù)半軸上,點(diǎn) D 在 y 軸負(fù)半軸上, 連接 AC 交 y 軸于點(diǎn) E,連接 BD 交 x 軸于點(diǎn) F,點(diǎn) M 在 DC 延長線上,連 EM,3∠MEC+∠CEO=180°,點(diǎn) N 在 AB 延長線上,點(diǎn) G 在 OF 延長線上,∠NFG= 2∠NFB,請?zhí)骄俊?/span>EMC 和∠BNF 的數(shù)量關(guān)系,給出結(jié)論并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,當(dāng)△DCE旋轉(zhuǎn)至點(diǎn)A,D,E在同一直線上,連接BE,易證△BCE≌△ACD.則
①∠BEC=______°;②線段AD、BE之間的數(shù)量關(guān)系是______.
(2)拓展研究:
如圖2,△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,若AE=15,DE=7,求AB的長度.
(3)探究發(fā)現(xiàn):
如圖3,P為等邊△ABC內(nèi)一點(diǎn),且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個動點(diǎn),過O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.
(1)探究:線段OE與OF的數(shù)量關(guān)系并加以證明;
(2)當(dāng)點(diǎn)O在邊AC上運(yùn)動時(shí),四邊形BCFE會是菱形嗎?若是,請證明;若不是,則說明理由;
(3)當(dāng)點(diǎn)O運(yùn)動到何處,且△ABC滿足什么條件時(shí),四邊形AECF是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店購進(jìn)一批紀(jì)念冊,每本進(jìn)價(jià)為20元,出于營銷考慮,要求每本紀(jì)念冊的售價(jià)不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時(shí),每本紀(jì)念冊的銷售單價(jià)是多少元?
(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com