【題目】如圖,RtABC中,∠ABC90°,ABBC,直線l1、l2、l3分別通過A、B、C三點,且l1l2l3.若l1l2的距離為4,l2l3的距離為6,則RtABC的面積為___________

【答案】26

【解析】過點BEFl2,l1E,l3F,如圖,

∵EF⊥l2,l1∥l2∥l3,

∴EF⊥l1⊥l3,

∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,

又∵∠ABC=90°,

∴∠ABE+∠FBC=90°,

∴∠EAB=∠FBC,

在△ABE和△BCF中,

∴△ABE≌△BCF,

∴BE=CF=4,AE=BF=6,

在Rt△ABE中,AB2=BE2+AE2

∴AB2=52,

∴S△ABC=ABBC=AB2=26.

故答案是26.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在我們認識的多邊形中,有很多軸對稱圖形.有些多邊形,邊數(shù)不同對稱軸的條數(shù)也不同;有些多邊形邊數(shù)相同但卻有不同數(shù)目的對稱軸.回答下列問題

(1)非等邊的等腰三角形有________條對稱軸,非正方形的長方形有________條對稱軸,等邊三角形有___________條對稱軸;

(2)觀察下列一組凸多邊形實線畫出),它們的共同點是只有1條對稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式請你在圖1-4和圖1-5,分別修改圖1-2和圖1-3,得到一個只有1條對稱軸的凸五邊形,并用實線畫出所得的凸五邊形

(3)小明希望構(gòu)造出一個恰好有2條對稱軸的凸六邊形,于是他選擇修改長方形2中是他沒有完成的圖形,請用實線幫他補完整個圖形;

(4)請你畫一個恰好有3條對稱軸的凸六邊形,并用虛線標出對稱軸

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB=12,AD=8,∠ABC的平分線交CD于點F,交AD的延長線于點E,CG⊥BE,垂足為G,若EF=2,則線段CG的長為(

A.
B.4
C.2
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我省某地區(qū)為了了解2016年初中畢業(yè)生畢業(yè)去向,對部分九年級學生進行了抽樣調(diào)查,就九年級學生畢業(yè)后的四種去向:A.讀普通高中;B.讀職業(yè)高中;C.直接進入社會就業(yè);D.其他(如出國等)進行數(shù)據(jù)統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(如圖1,如圖2)

(1)填空:該地區(qū)共調(diào)查了 200 名九年級學生;
(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;
(3)若該地區(qū)2016年初中畢業(yè)生共有3500人,請估計該地區(qū)今年初中畢業(yè)生中讀普通高中的學生人數(shù);
(4)老師想從甲,乙,丙,丁4位同學中隨機選擇兩位同學了解他們畢業(yè)后的去向情況,請用畫樹狀圖或列表的方法求選中甲同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:3tan30°﹣ +(2016+π)0+(﹣ 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE,已知:∠BAC=30°,EF⊥AB,垂足為F,連接DF.

(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的外切正六邊形ABCDEF的邊長為2,則圖中陰影部分的面積為(

A.
B.
C.2
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是A,B,C三個島的平面圖,C島在A島的北偏東32°方向,B島在A島的北偏東66°方向,C島在B島的北偏西44°方向.C島看A、B兩島的視角∠ACB的度數(shù)?

查看答案和解析>>

同步練習冊答案