如圖為直徑是26cm圓柱形油槽,裝入油后,油深CD為8cm,那么油面寬度AB=
24
24
cm.
分析:連接OA.首先根據垂徑定理得出AB=2AD,然后在直角△OAD中,根據勾股定理求出AD的長,進而得到AB的長度.
解答:解:連接OA.
∵OC⊥AB于點D,
∴點D為AB的中點,AB=2AD.
∵直徑是26cm,
∴OA=13cm,
∴OD=OC-CD=13-8=5cm,
由勾股定理知,
AD=
OA2-OD2
=12cm,
∴AB=24cm.
故答案為24.
點評:本考查了垂徑定理和勾股定理在實際生活中的應用.解題關鍵:在利用數(shù)學知識解決實際問題時,要善于把實際問題與數(shù)學中的理論知識聯(lián)系起來,能將生活中的問題抽象為數(shù)學問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖是用矩形厚紙片(厚度不計)做長方體包裝盒的示意圖,陰影部分是裁剪掉的部分.精英家教網沿圖中實線折疊做成的長方體紙盒的上下底面是正方形,有三處矩形形狀的“舌頭”用來折疊后粘貼或封蓋.
(1)若用長31cm,寬26cm的矩形厚紙片,恰好能做成一個符合要求的包裝盒,盒高是盒底邊長的2.5倍,三處“舌頭”的寬度相等.求“舌頭”的寬度和紙盒的高度;
(2)現(xiàn)有一張40cm×35 cm的矩形厚紙片,按如圖所示的方法設計包裝盒,用來包裝一個圓柱形工藝筆筒,已知該種筆筒的高是底面直徑2.5倍,要求包裝盒“舌頭”的寬度為2cm(如有多余可裁剪),問這樣的筆筒底面直徑最大可以為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:宜興市二模 題型:解答題

如圖是用矩形厚紙片(厚度不計)做長方體包裝盒的示意圖,陰影部分是裁剪掉的部分.
精英家教網
沿圖中實線折疊做成的長方體紙盒的上下底面是正方形,有三處矩形形狀的“舌頭”用來折疊后粘貼或封蓋.
(1)若用長31cm,寬26cm的矩形厚紙片,恰好能做成一個符合要求的包裝盒,盒高是盒底邊長的2.5倍,三處“舌頭”的寬度相等.求“舌頭”的寬度和紙盒的高度;
(2)現(xiàn)有一張40cm×35 cm的矩形厚紙片,按如圖所示的方法設計包裝盒,用來包裝一個圓柱形工藝筆筒,已知該種筆筒的高是底面直徑2.5倍,要求包裝盒“舌頭”的寬度為2cm(如有多余可裁剪),問這樣的筆筒底面直徑最大可以為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年河南省開封五中九年級(上)期中數(shù)學試卷(解析版) 題型:填空題

如圖為直徑是26cm圓柱形油槽,裝入油后,油深CD為8cm,那么油面寬度AB=    cm.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江蘇省南京市溧水縣中考數(shù)學一模試卷(解析版) 題型:解答題

如圖是用矩形厚紙片(厚度不計)做長方體包裝盒的示意圖,陰影部分是裁剪掉的部分.沿圖中實線折疊做成的長方體紙盒的上下底面是正方形,有三處矩形形狀的“舌頭”用來折疊后粘貼或封蓋.
(1)若用長31cm,寬26cm的矩形厚紙片,恰好能做成一個符合要求的包裝盒,盒高是盒底邊長的2.5倍,三處“舌頭”的寬度相等.求“舌頭”的寬度和紙盒的高度;
(2)現(xiàn)有一張40cm×35 cm的矩形厚紙片,按如圖所示的方法設計包裝盒,用來包裝一個圓柱形工藝筆筒,已知該種筆筒的高是底面直徑2.5倍,要求包裝盒“舌頭”的寬度為2cm(如有多余可裁剪),問這樣的筆筒底面直徑最大可以為多少?

查看答案和解析>>

同步練習冊答案