【題目】如圖,在△ABC中,BABC4,∠A30°,DAC上一動(dòng)點(diǎn),

(Ⅰ)AC的長(zhǎng)=_____

(Ⅱ)BD+DC的最小值是_____

【答案】(Ⅰ)AC4 (Ⅱ)4,2.

【解析】

)如圖,過BBEACE,根據(jù)等腰三角形的性質(zhì)和解直角三角形即可得到結(jié)論;

)如圖,作BC的垂直平分線交ACD,則BDCD,此時(shí)BD+DC的值最小,解直角三角形即可得到結(jié)論.

解:()如圖,過BBEACE

BABC4,

AECE,

∵∠A30°

AEAB2,

AC2AE4

)如圖,作BC的垂直平分線交ACD,

BDCD,此時(shí)BD+DC的值最小,

BFCF2,

BDCD ,

BD+DC的最小值=2,

故答案為:4,2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)M為二次函數(shù)y=﹣(xb2+4b+1圖象的頂點(diǎn),直線ymx+5分別交x軸正半軸,y軸于點(diǎn)A,B

1)判斷頂點(diǎn)M是否在直線y4x+1上,并說明理由.

2)如圖1,若二次函數(shù)圖象也經(jīng)過點(diǎn)A,B,且mx+5>﹣(xb2+4b+1,根據(jù)圖象,寫出x的取值范圍.

3)如圖2,點(diǎn)A坐標(biāo)為(50),點(diǎn)MAOB內(nèi),若點(diǎn)Cy1),Dy2)都在二次函數(shù)圖象上,試比較y1y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)DE分別是邊AB、BC的中點(diǎn),點(diǎn)F、G是邊AC的三等分點(diǎn),DF、EG的延長(zhǎng)線相交于點(diǎn)H,連接HA、HC

(1)求證:四邊形FBGH是菱形;

(2)求證:四邊形ABCH是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB5,過點(diǎn)BBDAB,點(diǎn)C,D都在AB上方,AD交△BCD的外接圓⊙O于點(diǎn)E

1)求證:∠CAB=∠AEC

2)若BC3

ECBD,求AE的長(zhǎng).

②若△BDC為直角三角形,求所有滿足條件的BD的長(zhǎng).

3)若BCEC ,則   .(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的最大值為4,且該拋物線與軸的交點(diǎn)為,頂點(diǎn)為.

1)求該二次函數(shù)的解析式及點(diǎn),的坐標(biāo);

2)點(diǎn)軸上的動(dòng)點(diǎn),

的最大值及對(duì)應(yīng)的點(diǎn)的坐標(biāo);

②設(shè)軸上的動(dòng)點(diǎn),若線段與函數(shù)的圖像只有一個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸,軸分別交于點(diǎn),經(jīng)過點(diǎn)的拋物線軸的另一個(gè)交點(diǎn)為點(diǎn),點(diǎn)是拋物線上一點(diǎn),過點(diǎn)軸于點(diǎn),連接,設(shè)點(diǎn)的橫坐標(biāo)為.

求拋物線的解析式;

當(dāng)點(diǎn)在第三象限,設(shè)的面積為,求的函數(shù)關(guān)系式,并求出的最大值及此時(shí)點(diǎn)的坐標(biāo);

連接,若,請(qǐng)直接寫出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正多邊形的對(duì)稱軸共有10條,且該正多邊形的半徑等于4,那么該正多邊形的邊長(zhǎng)等于____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC紙片中,ABBCAC,點(diǎn)DAB邊的中點(diǎn),點(diǎn)E在邊AC上,將紙片沿DE折疊,使點(diǎn)A落在BC邊上的點(diǎn)F處.則下列結(jié)論成立的個(gè)數(shù)有( 。佟BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位線;④BF+CEDF+DE

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案