【題目】已知二次函數(shù)的最大值為4,且該拋物線(xiàn)與軸的交點(diǎn)為,頂點(diǎn)為.
(1)求該二次函數(shù)的解析式及點(diǎn),的坐標(biāo);
(2)點(diǎn)是軸上的動(dòng)點(diǎn),
①求的最大值及對(duì)應(yīng)的點(diǎn)的坐標(biāo);
②設(shè)是軸上的動(dòng)點(diǎn),若線(xiàn)段與函數(shù)的圖像只有一個(gè)公共點(diǎn),求的取值范圍.
【答案】(1),點(diǎn)坐標(biāo)為,頂點(diǎn)的坐標(biāo)為;(2)①最大值是,的坐標(biāo)為,②的取值范圍為或或.
【解析】
(1)先利用對(duì)稱(chēng)軸公式x=,計(jì)算對(duì)稱(chēng)軸,即頂點(diǎn)坐標(biāo)為(1,4),再將兩點(diǎn)代入列二元一次方程組求出解析式;
(2)根據(jù)三角形的三邊關(guān)系:可知P、C、D三點(diǎn)共線(xiàn)時(shí)|PC-PD|取得最大值,求出直線(xiàn)CD與x軸的交點(diǎn)坐標(biāo),就是此時(shí)點(diǎn)P的坐標(biāo);
(3)先把函數(shù)中的絕對(duì)值化去,可知,此函數(shù)是兩個(gè)二次函數(shù)的一部分,分三種情況進(jìn)行計(jì)算:①當(dāng)線(xiàn)段PQ過(guò)點(diǎn)(0,3),即點(diǎn)Q與點(diǎn)C重合時(shí),兩圖象有一個(gè)公共點(diǎn),當(dāng)線(xiàn)段PQ過(guò)點(diǎn)(3,0),即點(diǎn)P與點(diǎn)(3,0)重合時(shí),兩函數(shù)有兩個(gè)公共點(diǎn),寫(xiě)出t的取值;②線(xiàn)段PQ與當(dāng)函數(shù)y=a|x|2-2a|x|+c(x≥0)時(shí)有一個(gè)公共點(diǎn)時(shí),求t的值;③當(dāng)線(xiàn)段PQ過(guò)點(diǎn)(-3,0),即點(diǎn)P與點(diǎn)(-3,0)重合時(shí),線(xiàn)段PQ與當(dāng)函數(shù)y=a|x|2-2a|x|+c(x<0)時(shí)也有一個(gè)公共點(diǎn),則當(dāng)t≤-3時(shí),都滿(mǎn)足條件;綜合以上結(jié)論,得出t的取值.
解:(1)∵,
∴的對(duì)稱(chēng)軸為.
∵人最大值為4,
∴拋物線(xiàn)過(guò)點(diǎn).
得,
解得.
∴該二次函數(shù)的解析式為.
點(diǎn)坐標(biāo)為,頂點(diǎn)的坐標(biāo)為.
(2)①∵,
∴當(dāng)三點(diǎn)在一條直線(xiàn)上時(shí),取得最大值.
連接并延長(zhǎng)交軸于點(diǎn),.
∴的最大值是.
易得直線(xiàn)的方程為.
把代入,得.
∴此時(shí)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為.
②的解析式可化為
設(shè)線(xiàn)段所在直線(xiàn)的方程為,將,的坐標(biāo)代入,可得線(xiàn)段所在直線(xiàn)的方程為.
(1)當(dāng)線(xiàn)段過(guò)點(diǎn),即點(diǎn)與點(diǎn)重合時(shí),線(xiàn)段與函數(shù)的圖像只有一個(gè)公共點(diǎn),此時(shí).
∴當(dāng)時(shí),線(xiàn)段與函數(shù)的圖像只有一個(gè)公共點(diǎn).
(2)當(dāng)線(xiàn)段過(guò)點(diǎn),即點(diǎn)與點(diǎn)重合時(shí),線(xiàn)段與函數(shù)的圖像只有一個(gè)公共點(diǎn),此時(shí).
當(dāng)線(xiàn)段過(guò)點(diǎn),即點(diǎn)與點(diǎn)重合時(shí),,此時(shí)線(xiàn)段與函數(shù)的圖像有兩個(gè)公共點(diǎn).
所以當(dāng)時(shí),線(xiàn)段與函數(shù)的圖像只有一個(gè)公共點(diǎn).
(3)將帶入,并整理,得.
.
令,解得.
∴當(dāng)時(shí),線(xiàn)段與函數(shù)的圖像只有一個(gè)公共點(diǎn).
綜上所述,的取值范圍為或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)某批乒乓球質(zhì)量進(jìn)行隨機(jī)調(diào)查,結(jié)果如下表;
隨機(jī)抽取的乒乓球數(shù) | 10 | 20 | 50 | 100 | 200 | 500 | 1000 |
優(yōu)等品數(shù) | 7 | 16 | 43 | 81 | 164 | 410 | 820 |
優(yōu)等頻率 | 0.7 | 0.8 | 0.86 | 0.81 | 0.82 | 0.82 |
(1)填表格中的空為_______.
(2)根據(jù)上表估計(jì),在這批乒乓球中任取一個(gè)球,它為優(yōu)等品的概率大約是________.(保留兩位小數(shù)點(diǎn))
(3)學(xué)校需要500個(gè)乒乓球的優(yōu)等品,那么可以推測(cè)出最有可能進(jìn)這批貨的乒乓球個(gè)數(shù)是多少合適?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機(jī)傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機(jī)傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請(qǐng)用“畫(huà)樹(shù)狀圖”的方式給出分析過(guò)程)
(2)如果甲跟另外n(n≥2)個(gè)人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是 (請(qǐng)直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點(diǎn)P從A點(diǎn)出發(fā)沿A→C→B路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為B點(diǎn);點(diǎn)Q從B點(diǎn)出發(fā)沿B→C→A路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為A點(diǎn).點(diǎn)P和Q分別以每秒1cm和3cm的運(yùn)動(dòng)速度同時(shí)開(kāi)始運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止運(yùn)動(dòng),在某時(shí)刻,分別過(guò)P和Q作PE⊥l于E,QF⊥l于F.設(shè)運(yùn)動(dòng)時(shí)間為t秒,則當(dāng)t=______秒時(shí),△PEC與△QFC全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)經(jīng)過(guò)A,B,C三點(diǎn).
(1)求拋物線(xiàn)的解析式。
(2)若點(diǎn)M為第三象限內(nèi)拋物線(xiàn)上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點(diǎn)P是拋物線(xiàn)上的動(dòng)點(diǎn),點(diǎn)Q是直線(xiàn)上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫(xiě)出相應(yīng)的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)E是OA的中點(diǎn),連接BE并延長(zhǎng)交AD于點(diǎn)F,已知S△AEF=4,則下列結(jié)論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是( 。
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】美麗的黃河宛如一條玉帶穿城而過(guò),沿河兩岸的濱河路風(fēng)情線(xiàn)是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實(shí)踐活動(dòng)中,小林在南濱河路上的A,B兩點(diǎn)處,利用測(cè)角儀分別對(duì)北岸的一觀景亭D進(jìn)行了測(cè)量.如圖,測(cè)得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】清明小長(zhǎng)假是廣大游客走出家門(mén)放松心情、感受祖國(guó)大好河山的好時(shí)機(jī),為豐富游客出行體驗(yàn),小長(zhǎng)假前夕,遵義市啟動(dòng)了2018年“醉美遵義,四季主題游”之春季踏青賞花游。三天假期,遵義市共接待游客230.11萬(wàn)人次,實(shí)現(xiàn)旅游綜合收入12.66億元,把12.66億用科學(xué)計(jì)數(shù)法表示為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,線(xiàn)段,若點(diǎn)A在y軸上滑動(dòng),點(diǎn)B隨著線(xiàn)段AB在射線(xiàn)x軸上滑動(dòng),(A、B與O不重合),Rt△AOB的內(nèi)切⊙K分別與OA、OB、AB切于E、F、P.
(1)在上述變化過(guò)程中:Rt△AOB的周長(zhǎng),⊙K的半徑,△AOB外接圓半徑,這幾個(gè)量中不會(huì)發(fā)生變化的是什么?并簡(jiǎn)要說(shuō)明理由;
(2)當(dāng)時(shí),求⊙K的半徑r;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com