【題目】在正方形ABCD中,E是CD邊上的點(diǎn),過點(diǎn)E作EF⊥BD于F.
(1)尺規(guī)作圖:在圖中求作點(diǎn)E,使得EF=EC;(保留作圖痕跡,不寫作法)
(2)在(1)的條件下,連接FC,求∠BCF的度數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點(diǎn)為射線上一動(dòng)點(diǎn),將沿折疊,得到若恰好落在射線上,則的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)方法選擇
如圖①,四邊形是的內(nèi)接四邊形,連接,,.求證:.
小穎認(rèn)為可用截長法證明:在上截取,連接…
小軍認(rèn)為可用補(bǔ)短法證明:延長至點(diǎn),使得…
請(qǐng)你選擇一種方法證明.
(2)類比探究
(探究1)
如圖②,四邊形是的內(nèi)接四邊形,連接,,是的直徑,.試用等式表示線段,,之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(探究2)
如圖③,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關(guān)系式是______.
(3)拓展猜想
如圖④,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關(guān)系式是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,點(diǎn)A,B,M,N都在格點(diǎn)上.從點(diǎn)M,N中任取一點(diǎn),與點(diǎn)A,B順次連接組成一個(gè)三角形,則下列事件是必然事件的是( )
A.所得三角形是銳角三角形B.所得三角形是直角三角形
C.所得三角形是鈍角三角形D.所得三角形是等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,以為邊在的另一側(cè)作,點(diǎn)為射線上任意一點(diǎn),在射線上截取,連接.
(1)如圖1,當(dāng)點(diǎn)落在線段的延長線上時(shí),直接寫出的度數(shù);
(2)如圖2,當(dāng)點(diǎn)落在線段(不含邊界)上時(shí),與于點(diǎn),請(qǐng)問(1)中的結(jié)論是否仍成立?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說明理由;
(3)在(2)的條件下,若,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y1=kx2+ax+a的圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),函數(shù)y2=kx2+bx+b,的圖象與x軸交于點(diǎn)C,D(點(diǎn)C在點(diǎn)D的左側(cè)),其中k≠0,a≠b.
(1)求證:函數(shù)y1與y2的圖象交點(diǎn)落在一條定直線上;
(2)若AB=CD,求a,b和k應(yīng)滿足的關(guān)系式;
(3)是否存在函數(shù)y1和y2,使得B,C為線段AD的三等分點(diǎn)?若存在,求的值,若不存在,說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[提出問題]正多邊形內(nèi)任意一點(diǎn)到各邊距離之和與這個(gè)正多邊形的邊及內(nèi)角有什么關(guān)系?
[探索發(fā)現(xiàn)]
為了解決這個(gè)問題,我們不妨從最簡單的正多邊形-------正三角形入手
如圖①,是正三角形,邊長是是內(nèi)任意一點(diǎn),到各邊距離分別為,確定的值與的邊及內(nèi)角的關(guān)系.
如圖②,五邊形是正五邊形,邊長是是正五邊形內(nèi)任意一點(diǎn),到五邊形各邊距離分別為, 參照的探索過程,確定的值與正五邊形的邊及內(nèi)角的關(guān)系.
類比上述探索過程:
正六邊形(邊長為)內(nèi)任意一點(diǎn) 到各邊距離之和
正八邊形(邊長為)內(nèi)任意一點(diǎn)到各邊距離之和
[問題解決]正邊形(邊長為)內(nèi)任意-一點(diǎn)P到各邊距離之和
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,圓內(nèi)接四邊形ABCD,AD=BC,AB是⊙O的直徑.
(1)求證:AB∥CD;
(2)如圖2,連接OD,作∠CBE=2∠ABD,BE交DC的延長線于點(diǎn)E,若AB=6,AD=2,求CE的長;
(3)如圖3,延長OB使得BH=OB,DF是⊙O的直徑,連接FH,若BD=FH,求證:FH是⊙O的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com