【題目】在乘法公式的學(xué)習(xí)中,我們采用了構(gòu)造幾何圖形的方法研究問(wèn)題,借助直觀、形象的幾何模型,加深對(duì)乘法公式的認(rèn)識(shí)和理解,從中感悟數(shù)形結(jié)合的思想方法,感悟幾何與代數(shù)內(nèi)在的統(tǒng)一性,根據(jù)課堂學(xué)習(xí)的經(jīng)驗(yàn),解決下列問(wèn)題:
(1)如圖①邊長(zhǎng)為(x+3)的正方形紙片,剪去一個(gè)邊長(zhǎng)為x的正方形之后,剩余部分可拼剪成一個(gè)長(zhǎng)方形(不重疊無(wú)縫隙),則這個(gè)長(zhǎng)方形的面積為 (用含x的式子表示).
(2)如果你有5張邊長(zhǎng)為a的正方形紙,4張長(zhǎng)、寬分別為a、b(a>b)的長(zhǎng)方形紙片,3張邊長(zhǎng)為b正方形紙片.現(xiàn)從其中取出若干張紙片,每種紙片至少取一張,把取出的這些紙片拼成一個(gè)正方形(不重疊無(wú)縫隙),則拼成的正方形的邊長(zhǎng)最長(zhǎng)可以為
A.a+b;B.a+2b;C.a+3b;D.2a+b.
(3)1個(gè)大正方形和4個(gè)大小完全相同的小正方形按圖②③兩種方式擺放,求圖③中,大正方形中未被4個(gè)小正方形覆蓋部分的面積.(用含m、n的代數(shù)式表示)
【答案】(1) (2)D (3)
【解析】
(1)兩個(gè)正方形的面積差就是長(zhǎng)方形的面積;
(2)根據(jù)5張邊長(zhǎng)為a的正方形紙片的面積是5a2,4張邊長(zhǎng)分別為a、b(a>b)的矩形紙片的面積是4ab,3張邊長(zhǎng)為b的正方形紙片的面積是3b2,得出4a2+4ab+b2=(2a+b)2,再根據(jù)正方形的面積公式即可得出答案;
(3)利用大正方形的面積減去4個(gè)小正方形的面積即可求解.
解:(1)則這個(gè)長(zhǎng)方形的面積是(x+3)2﹣x2=6x+9,
故答案為:6x+9;
(2)5張邊長(zhǎng)為a的正方形紙片的面積是5a2,
4張邊長(zhǎng)分別為a、b的矩形紙片的面積是4ab,
3張邊長(zhǎng)為b的正方形紙片的面積是3b2,
∵4a2+4ab+b2=(2a+b)2,
∴拼成的正方形的邊長(zhǎng)最長(zhǎng)可以為2a+b,
故選:D.
(3)設(shè)小正方形的邊長(zhǎng)為x,大正方形的邊長(zhǎng)為y,
由圖②知,2x+y=m,
由圖③知,y﹣2x=n,
∴x=(m﹣n),y=(m+n),
∴③的大正方形中未被小正方形覆蓋部分的面積=()2﹣4×()2=mn.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為10的菱形ABCD中,對(duì)角線BD=16,對(duì)角線AC,BD相交于點(diǎn)G,點(diǎn)O是直線BD上的動(dòng)點(diǎn),OE⊥AB于E,OF⊥AD于F.
(1)求對(duì)角線AC的長(zhǎng)及菱形ABCD的面積.
(2)如圖①,當(dāng)點(diǎn)O在對(duì)角線BD上運(yùn)動(dòng)時(shí),OE+OF的值是否發(fā)生變化?請(qǐng)說(shuō)明理由.
(3)如圖②,當(dāng)點(diǎn)O在對(duì)角線BD的延長(zhǎng)線上時(shí),OE+OF的值是否發(fā)生變化?若不變,請(qǐng)說(shuō)明理由;若變化,請(qǐng)?zhí)骄?/span>OE,OF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】益馬高速通車后,將桃江馬跡塘的農(nóng)產(chǎn)品運(yùn)往益陽(yáng)的運(yùn)輸成本大大降低。馬跡塘一農(nóng)戶需要將A,B兩種農(nóng)產(chǎn)品定期運(yùn)往益陽(yáng)某加工廠,每次運(yùn)輸A,B產(chǎn)品的件數(shù)不變,原來(lái)每運(yùn)一次的運(yùn)費(fèi)是1200元,現(xiàn)在每運(yùn)一次的運(yùn)費(fèi)比原來(lái)減少了300元,A,B兩種產(chǎn)品原來(lái)的運(yùn)費(fèi)和現(xiàn)在的運(yùn)費(fèi)(單位:元∕件)如下表所示:
品種 | A | B |
原來(lái)的運(yùn)費(fèi) | 45 | 25 |
現(xiàn)在的運(yùn)費(fèi) | 30 | 20 |
(1)求每次運(yùn)輸?shù)霓r(nóng)產(chǎn)品中A,B產(chǎn)品各有多少件?
(2)由于該農(nóng)戶誠(chéng)實(shí)守信,產(chǎn)品質(zhì)量好,加工廠決定提高該農(nóng)戶的供貨量,每次運(yùn)送的總件數(shù)增加8件,但總件數(shù)中B產(chǎn)品的件數(shù)不得超過(guò)A產(chǎn)品件數(shù)的2倍,問(wèn)產(chǎn)品件數(shù)增加后,每次運(yùn)費(fèi)最少需要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某飛機(jī)于空中A處探測(cè)到目標(biāo)C,此時(shí)飛行高度AC=1200m,從飛機(jī)上看地平面指揮臺(tái)B的俯角α=16°31′,則飛機(jī)A與指揮臺(tái)B的距離等于(結(jié)果保留整數(shù))(參考數(shù)據(jù)sin16°31′=0.28,cos16°31′=0.95,tan16°31′=0.30)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E.F分別在AB、CD上,AE=CF,連接AF,BF,DE,CE,分別交于H、G.
求證:(1)四邊形AECF是平行四邊形。(2)EF與GH互相平分。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:
2018年10月24日港珠澳大橋正式開通,它是中國(guó)建設(shè)史上里程最長(zhǎng)、投資最多、施工難度最大的跨海橋梁項(xiàng)目,體現(xiàn)了我國(guó)逢山開路、遇水架橋的奮斗精神,體現(xiàn)了我國(guó)綜合國(guó)力、自主創(chuàng)新能力,體現(xiàn)了我國(guó)勇創(chuàng)世界一流的民族志氣. 港珠澳大橋全長(zhǎng)55公里,跨越伶仃洋,東接香港特別行政區(qū),西接廣東省珠海市和澳門特別行政區(qū),首次實(shí)現(xiàn)了珠海、澳門與香港的跨海陸路連接,極大地縮短了三地間的距離. 通車前,小亮媽媽駕車從香港到珠海的陸路車程大約220公里,如果行駛的平均速度不變,港珠澳大橋通車后,小亮媽媽駕車從香港到珠海所用的行駛時(shí)間比原來(lái)縮短了2小時(shí)15分鐘,求小亮媽媽原來(lái)駕車從香港到珠海需要多長(zhǎng)時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形OABC的三個(gè)頂點(diǎn)A(0,10),B(8,10),C(8,0),過(guò)O、C兩點(diǎn)的拋物線y=ax2+bx+c與線段AB交于點(diǎn)D,沿直線CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處.
(1)求AD的長(zhǎng)及拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.請(qǐng)問(wèn)當(dāng)t為何值時(shí),以P、Q、C為頂點(diǎn)的三角形是等腰三角形?
(3)若點(diǎn)N在拋物線對(duì)稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M、N、C、E為頂點(diǎn)四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫求解過(guò)程);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC中,AB=AC,點(diǎn)D為BC中點(diǎn).∠MDN=900,∠MDN繞點(diǎn)D旋轉(zhuǎn),DM、DN分別與邊AB、AC交于E、F兩點(diǎn).下列結(jié)論
①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD與EF可能互相平分,
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com