課本指出:公認(rèn)的真命題稱為公理,除了公理外,其他的真命題(如推論、定理等)的正確性都需要通過推理的方法證實(shí).
(1)敘述三角形全等的判定方法中的推論AAS;
(2)證明推論AAS.
要求:敘述推論用文字表達(dá);用圖形中的符號(hào)表達(dá)已知、求證,并證明,證明對(duì)各步驟要注明依據(jù).
解:(1)三角形全等的判定方法中的推論AAS指的是:兩邊及其夾角分別對(duì)應(yīng)相等的兩個(gè)三角形全等。
(2)已知:在△ABC與△DEF中,∠A=∠D,∠C=∠F,BC=EF。
求證:△ABC≌△DEF。
證明:如圖,在△ABC與△DEF中,∠A=∠D,∠C=∠F(已知),
∴∠A+∠C=∠D+∠F(等量代換)。
又∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形內(nèi)角和定理),
∴∠B=∠E。
∴在△ABC與△DEF中,。
∴△ABC≌△DEF(ASA)。

試題分析:(1)兩邊及其夾角分別對(duì)應(yīng)相等的兩個(gè)三角形全等。
(2)根據(jù)三角形內(nèi)角和定理和全等三角形的判斷定理ASA來證明。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,△ABC為等邊三角形,點(diǎn)P是射線CM上一點(diǎn),連接AP,把△ACP繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)60°,得△ABD,直線BD與射線CM交于點(diǎn)E,連接AE.
(1)如圖,①求∠BEC的度數(shù);

②若AE=2BE,猜想線段CE、BE的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖,若AE=mBE,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

兩個(gè)大小不同的等腰直角三角形三角板如圖(1)所示放置,圖(2)是由它抽象出的幾何圖形,點(diǎn)B、C、E在同一條直線上,連接DC

(1)請(qǐng)找出圖(2)中的全等三角形,并給予證明;(說明:結(jié)論中不得含有未標(biāo)識(shí)的字母)
(2)求證:DC⊥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF,給出下列結(jié)論:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正確的結(jié)論是_______.(寫出正確答案的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

分別以?ABCD(∠CDA≠90°)的三邊AB,CD,DA為斜邊作等腰直角三角形,△ABE,△CDG,△ADF.

(1)如圖1,當(dāng)三個(gè)等腰直角三角形都在該平行四邊形外部時(shí),連接GF,EF.請(qǐng)判斷GF與EF的關(guān)系(只寫結(jié)論,不需證明);
(2)如圖2,當(dāng)三個(gè)等腰直角三角形都在該平行四邊形內(nèi)部時(shí),連接GF,EF,(1)中結(jié)論還成立嗎?若成立,給出證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小明在做課本“目標(biāo)與評(píng)定”中的一道題:如圖1,直線a,b所成的角跑到畫板外面去了,你有什么辦法量出這兩條直線所成的角的度數(shù)?

(1)①請(qǐng)幫小明在圖2的畫板內(nèi)畫出你的測(cè)量方案圖(簡(jiǎn)要說明畫法過程);

②說出該畫法依據(jù)的定理.
(2)小明在此基礎(chǔ)上進(jìn)行了更深入的探究,想到兩個(gè)操作:

①在圖3的畫板內(nèi),在直線a與直線b上各取一點(diǎn),使這兩點(diǎn)與直線a、b的交點(diǎn)構(gòu)成等腰三角形(其中交點(diǎn)為頂角的頂點(diǎn)),畫出該等腰三角形在畫板內(nèi)的部分.
②在圖3的畫板內(nèi),作出“直線a、b所成的跑到畫板外面去的角”的平分線(在畫板內(nèi)的部分),只要求作出圖形,并保留作圖痕跡.
請(qǐng)你幫小明完成上面兩個(gè)操作過程.(必須要有方案圖,所有的線不能畫到畫板外,只能畫在畫板內(nèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,某山坡的坡面AB=200米,坡角∠BAC=30°,則該山坡的高BC的長(zhǎng)為     米。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,為了測(cè)量河的寬度AB,測(cè)量人員在高21m的建筑物CD的頂端D處測(cè)得河岸B處的俯角為45°,測(cè)得河對(duì)岸A處的俯角為30°(A、B、C在同一條直線上),則河的寬度AB約為   m(精確到0.1m).(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

四邊形的外角和等于       .

查看答案和解析>>

同步練習(xí)冊(cè)答案