【題目】如圖1所示,等邊△ABC中,AD是BC邊上的中線,根據(jù)等腰三角形的“三線合一”特性,AD平分∠BAC,且AD⊥BC,則有∠BAD=30°,BD=CD=AB.于是可得出結論“直角三角形中, 30°角所對的直角邊等于斜邊的一半”.
請根據(jù)從上面材料中所得到的信息解答下列問題:
(1)如圖2所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于點D,垂足為E,當BD=5cm,∠B=30°時,△ACD的周長= .
(2)如圖3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中點,DE⊥AB,垂足為E,那么BE:EA= .
(3)如圖4所示,在等邊△ABC中,D、E分別是BC、AC上的點,且AE=DC,AD、BE交于點P,作BQ⊥AD于Q,若BP=2,求BQ的長.
【答案】(1)15cm;(2)3:1;(3)BQ=.
【解析】整體分析:
(1)由“直角三角形中,30°角所對的直角邊等于斜邊的一半”求AC的長;(2)連接AD,由“三線合一”得∠BAD=60°,利用直角三角形中的30°角所對的直角邊的性質,分別把BE,EA用BD表示;(3)證明△BAE≌△ACD,得∠BPQ=60°,結合勾股定理求解.
解:(1)∵DE是線段BC的垂直平分線,∠ACB=90°,
∴CD=BD,AD=BD.
又∵在△ABC中,∠ACB=90°,∠B=30°,
∴AC=AB,
∴△ACD的周長=AC+AB=3BD=15cm.
故答案為15cm;
(2)連接AD,如圖所示.
∵在△ABC中,AB=AC,∠A=120°,D是BC的中點,
∴∠BAD=60°.
又∵DE⊥AB,
∴∠B=∠ADE=30°,∴BE=BD,EA=AD,
∵BD=AD,∴EA=AD=BD.
∴BE:EA=BD: AD,
∴BE:AE=3:1.
故答案為3:1.
(3)∵△ABC為等邊三角形.
∴AB=AC,∠BAC=∠ACB=60°,
在△BAE和△ACD中,
AE=CD,∠BAC=∠ACB,AB=AC,
∴△BAE≌△ACD(SAS),∴∠ABE=∠CAD.
∵∠BPQ為△ABP外角,
∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°,
∵BQ⊥AD,
∴∠PBQ=30°,∴BP=2PQ=2,∴PQ=1,
∴BQ===.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線BC于點M,切點為N,則DM的長為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解方程
(1)x2=49
(2)3x2-7x=0
(3)(直接開平方法)
(4)(用配方法)
(5) (因式分解法)
(6)
(7)(x-2)(x-5)=-2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x交于A(﹣1,0)、E(3,0)兩點,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)設拋物線頂點為D,求四邊形AEDB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠C=90°,AE是△ABC的角平分線;ED平分∠AEB,交AB于點D;∠CAE∠B.
(1)求∠B的度數(shù).
(2)如果AC=3cm,求AB的長度.
(3)猜想:ED與AB的位置關系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB與CD交于點O,OM為射線.
(1)寫出∠BOD的對頂角;
(2)寫出∠BOD與∠COM的鄰補角;
(3)已知∠AOC=70°,∠BOM=80°,求∠DOM和∠AOM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,已知點C在線段AB上,且AC=6cm,BC=4cm,點M,N分別是AC,BC的中點,求線段MN的長度.
(2)在(1)中,如果AC=acm,BC=bcm,其它條件不變,你能猜出MN的長度嗎?請你用一句簡潔的話表述你發(fā)現(xiàn)的規(guī)律.
(3)對于(1)題,如果我們這樣敘述它:“已知線段AC=6cm,BC=4cm,點C在直線AB上,點M,N分別是AC,BC的中點,求MN的長度.”結果會有變化嗎?如果有,求出結果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】永州市是一個降水豐富的地區(qū),今年4月初,某地連續(xù)降雨導致該地某水庫水位持續(xù)上漲,下表是該水庫4月1日~4月4日的水位變化情況:
日期x | 1 | 2 | 3 | 4 |
水位y(米) | 20.00 | 20.50 | 21.00 | 21.50 |
(1)請建立該水庫水位y與日期x之間的函數(shù)模型;
(2)請用求出的函數(shù)表達式預測該水庫今年4月6日的水位;
(3)你能用求出的函數(shù)表達式預測該水庫今年12月1日的水位嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com