【題目】愛好思考的小明在探究兩條直線的位置關系查閱資料時,發(fā)現(xiàn)了“中垂三角形”,即兩條中線相互垂直的三角形“中垂三角形”,如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AM⊥BN于點P,像△ABC這樣的三角形均為“中垂三角形”.設BC=a,AC=b,AB=c.
(特例研究)
(1)如圖1,當tan∠PAB=1,c=4時,a=b= ;
(歸納證明)
(2)請你觀察(1)中的計算結果,猜想a2、b2、c2三者之間的關系,用等式表示出來,并利用圖2證明你的結論;
(拓展證明)
(3)如圖4,ABCD中,E、F分別是AD、BC的三等分點,且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF交BE相較于點G,AD=3,AB=3,求AF的長.
【答案】(1);(2)a2+b2=5c2,證明見解析;(3)4
【解析】
(1)首先證明△APB,△PMN都是等腰直角三角形,求出PA、PB、PN、PM,再利用勾股定理即可解決問題.
(2)結論a2+b2=5c2.設MP=x,NP=y,則AP=2x,BP=2y,利用勾股定理分別求出a2、b2、c2即可解決問題.
(3)取AB中點H,連接FH并且延長交DA的延長線于P點,首先證明△ABF是中垂三角形,利用(2)中結論列出方程即可解決問題.
(1)解:如圖中,
∵CN=AN,CM=BM,
∴MN∥AB,MN=AB=2,
∵tan∠PAB=1,
∴∠PAB=∠PBA=∠PNM=∠PMN=45°,
∴PN=PM=2,PB=PA=4,
∴AN=BM=,
∴b=AC=2AN=4,a=BC=4,
∴,
故答案為:;
(2)結論a2+b2=5c2.
證明:如圖中,
連接MN.
∵AM、BN是中線,
∴MN∥AB,MN=AB,
∴△MPN∽△APB,
∴,
設MP=x,NP=y,則AP=2x,BP=2y,
∴a2=BC2=4BM2=4(MP2+BP2)=4x2+16y2,
b2=AC2=4AN2=4(PN2+AP2)=4y2+16x2,
c2=AB2=AP2+BP2=4x2+4y2,
∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2.
(3)解:如圖中,
∵四邊形ABCD是平行四邊形,
∴AE∥BF,
∴,
在△AGE和△FGB中,
,
∴△AGE≌△FGB,
∴AG=FG,取AB中點H,連接FH并且延長交DA的延長線于P點,
同理可證△APH≌△BFH,
∴AP=BF,PE=2BF=CF,
即PE∥CF,PE=CF,
∴四邊形CEPF是平行四邊形,
∴FP∥CE,
∵BE⊥CE,
∴FP⊥BE,即FH⊥BG,
∴△ABF是中垂三角形,
由(2)可知AB2+AF2=5BF2,
∵AB=3,BF=AD=,
∴9+AF2=5×,
∴AF=4.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是邊長為的等邊三角形.將△ABC繞點A逆時針旋轉角θ(0°<θ<180°),得到△ADE,BD和EC所在直線相交于點O.
(1)如圖a,當θ=20°時,判斷△ABD與△ACE是否全等?并說明理由;
(2)當△ABC旋轉到如圖b所在位置時(60°<θ<120°),求∠BOE的度數(shù);
(3)在θ從60°到120°的旋轉過程中,點O運動的軌跡長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解居民的環(huán)保意識,社區(qū)工作人員在光明小區(qū)隨機抽取了若干名居民開展主題為“打贏藍天保衛(wèi)戰(zhàn)”的環(huán)保知識有獎問答活動,并用得到的數(shù)據(jù)繪制了如圖條形統(tǒng)計圖(得分為整數(shù),滿分為10分,最低分為6分)
請根據(jù)圖中信息,解答下列問題:
(1)本次調查一共抽取了 名居民;
(2)求本次調查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)社區(qū)決定對該小區(qū)500名居民開展這項有獎問答活動,得10分者設為“一等獎”,請你根據(jù)調查結果,幫社區(qū)工作人員估計需準備多少份“一等獎”獎品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解“停課不停學”期間,學生對線上學習方式的偏好情況,某校隨機拍取40名學生進行問卷調查,其統(tǒng)計結果如表:
最喜歡的線上學習方式(沒人最多選一種) | 人數(shù) |
直播 | 10 |
錄播 | |
資源包 | 5 |
線上答疑 | 8 |
合計 | 40 |
(1) ;
(2)若將選取各種“最喜歡的線上學習方式”的人數(shù)所占比例繪制成扇形統(tǒng)計圖,求“直播"對應扇形的圓心角度數(shù);
(3)根據(jù)調查結果估計該校10000名學生中,最喜歡“線上答疑”的學生人數(shù);
(4)在最喜歡“資源包”的學生中,有2名男生,3名女生.現(xiàn)從這5名學生中隨機抽取2名學生介紹學習經(jīng)驗,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠1=∠2,AD=AE,∠B=∠ACE,且B、C、D三點在一條直線上,
(1)試說明△ABD與△ACE全等的理由;
(2)如果∠B=60°,試說明線段AC、CE、CD之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明、小聰參加了跑的5期集訓,每期集訓結束時進行測試,根據(jù)他們的集訓時間、測試成績繪制成如圖的兩個統(tǒng)計圖.
根據(jù)圖中信息,有下面四個推斷:
①這5期的集訓共有56天;
②小明5次測試的平均成績11.66秒;
③從集訓時間看,集訓時間不是越長越好,集訓時間過長,可能造成勞累,導致成績下滑;
④從測試成績看,兩人的最好成績都是在第4期出現(xiàn),建議集訓時間定為14天.
你認為合理的推斷是__________(填寫你認為正確的推斷序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有三條邊相等的四邊形稱為三等邊四邊形.
(1)如圖①,平行四邊形中,對角線平分,將線段繞點旋轉一個角度至,連接.
①求證:四邊形是三等邊四邊形;
②如圖②,連接,.求證:;
(2)如圖,在(1)的條件下,設與交于點,,,,求以,和為邊的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲地捐贈了600噸物資支援武漢抗擊新冠肺炎,準備安排A、B兩種類型的貨車把這批物資從甲地快速送到武漢,若安排A型貨車5輛、B型貨車6輛,一共需補貼油費3800元;若安排A型貨車3輛、B型貨車2輛,一共需補貼油費1800元.
(1)從甲地到武漢,A、B兩種類型貨車每輛各需補貼油費多少元?
(2)A型貨車每輛可裝15噸物資,B型貨車每輛可裝12噸物資,若安排的B型貨車的數(shù)量是A型貨車的2倍還多4輛,且A型車最多可安排18輛.運送這批物資共有哪些安排,其中補貼的總油費最少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B(5,0),與y軸交于點C,拋物線的頂點為M(2,-9),連接BM,點P為線段BM上的一個動點.
(1)求二次函數(shù)的解析式.
(2)過點P作x軸的垂線,垂足為點Q,求四邊形ACPQ面積的最大值.
(3)是否存在點P,使得以P、M、C為頂點的三角形是等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com