【題目】為響應(yīng)“全民閱讀”號召,某校在七年級800名學(xué)生中隨機(jī)抽取100名學(xué)生,對概念機(jī)學(xué)生在2015年全年閱讀中外名著的情況進(jìn)行調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生閱讀中外名著的本數(shù),最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了如圖所示的不完整的條形統(tǒng)計圖,其中閱讀了6本的人數(shù)占被調(diào)查人數(shù)的30%,根據(jù)圖中提供的信息,補(bǔ)全條形統(tǒng)計圖并估計該校七年級全體學(xué)生在2015年全年閱讀中外名著的總本數(shù).
【答案】解:根據(jù)題意,閱讀了6本的人數(shù)為100×30%=30(人),
閱讀了7本的人數(shù)為:100﹣20﹣30﹣﹣15=35(人),
補(bǔ)全條形圖如圖:
∵平均每位學(xué)生的閱讀數(shù)量為: =6.45(本),
∴估計該校七年級全體學(xué)生在2015年全年閱讀中外名著的總本數(shù)為800×6.45=5160本,
答:估計該校七年級全體學(xué)生在2015年全年閱讀中外名著的總本數(shù)約為5160本.
【解析】由閱讀了6本的人數(shù)占被調(diào)查人數(shù)的30%可求得閱讀6本的人數(shù),將總?cè)藬?shù)減去閱讀數(shù)是5、6、8本的人數(shù)可得閱讀7本人數(shù),據(jù)此補(bǔ)全條形圖可得;根據(jù)樣本計算出平均每人的閱讀量,再用平均數(shù)乘以七年級學(xué)生總數(shù)即可得答案.本題主要考查條形統(tǒng)計圖,條形統(tǒng)計圖能清楚地表示出每個項(xiàng)目的數(shù)據(jù),熟知各項(xiàng)目數(shù)據(jù)個數(shù)之和等于總數(shù),也考查了用樣本估計總體.
【考點(diǎn)精析】掌握條形統(tǒng)計圖是解答本題的根本,需要知道能清楚地表示出每個項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋裝有三個完全相同的小球,分別標(biāo)號為1、2、3.求下列事件的概率:
(1)從中任取一球,小球上的數(shù)字為偶數(shù)
(2)從中任取一球,記下數(shù)字作為點(diǎn)A的橫坐標(biāo)x,把小球放回袋中,再從中任取一球記下數(shù)字作為點(diǎn)A的縱坐標(biāo)y,點(diǎn)A(x,y)在函數(shù)y=的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一漁船由西往東航行,在A點(diǎn)測得海島C位于北偏東60°的方向,前進(jìn)40海里到達(dá)B點(diǎn),此時,測得海島C位于北偏東30°的方向,則海島C到航線AB的距離CD是( 。
A.20海里
B.40海里
C.20海里
D.40海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=6,點(diǎn)E在邊CD上,DE= DC,連接AE,將△ADE沿AE翻折,點(diǎn)D落在點(diǎn)F處,點(diǎn)O是對角線BD的中點(diǎn),連接OF并延長OF交CD于點(diǎn)G,連接BF,BG,則△BFG的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y= x2﹣2x+1的圖象與一次函數(shù)y=kx+b(k≠0)的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B在第一象限內(nèi),點(diǎn)C是二次函數(shù)圖象的頂點(diǎn),點(diǎn)M是一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點(diǎn),過點(diǎn)B作軸的垂線,垂足為N,且S△AMO:S四邊形AONB=1:48.
(1)求直線AB和直線BC的解析式;
(2)點(diǎn)P是線段AB上一點(diǎn),點(diǎn)D是線段BC上一點(diǎn),PD∥x軸,射線PD與拋物線交于點(diǎn)G,過點(diǎn)P作PE⊥x軸于點(diǎn)E,PF⊥BC于點(diǎn)F.當(dāng)PF與PE的乘積最大時,在線段AB上找一點(diǎn)H(不與點(diǎn)A,點(diǎn)B重合),使GH+ BH的值最小,求點(diǎn)H的坐標(biāo)和GH+ BH的最小值;
(3)如圖2,直線AB上有一點(diǎn)K(3,4),將二次函數(shù)y= x2﹣2x+1沿直線BC平移,平移的距離是t(t≥0),平移后拋物線上點(diǎn)A,點(diǎn)C的對應(yīng)點(diǎn)分別為點(diǎn)A′,點(diǎn)C′;當(dāng)△A′C′K′是直角三角形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=45°,∠C=30°,點(diǎn)D是BC上一點(diǎn),連接AD,過點(diǎn)A作AG⊥AD,在AG上取點(diǎn)F,連接DF.延長DA至E,使AE=AF,連接EG,DG,且GE=DF.
(1)若AB=2 ,求BC的長;
(2)如圖1,當(dāng)點(diǎn)G在AC上時,求證:BD= CG;
(3)如圖2,當(dāng)點(diǎn)G在AC的垂直平分線上時,直接寫出 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)分別是軸上位于原點(diǎn)兩側(cè)的兩點(diǎn),點(diǎn)在第一象限,直線 交軸于點(diǎn),直線交軸于點(diǎn),.
(1)求;
(2)求點(diǎn)的坐標(biāo)及的值;
(3)若,求直線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=30°,BC=1,點(diǎn)D,E分別是直角邊BC,AC的中點(diǎn),則DE的長為( 。
A.1
B.2
C.
D.1+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、C是圓O上的三點(diǎn),且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點(diǎn)F,則∠BAF等于( 。
A.12.5°
B.15°
C.20°
D.22.5°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com