【題目】在一個(gè)不透明的口袋裝有三個(gè)完全相同的小球,分別標(biāo)號(hào)為1、2、3.求下列事件的概率:
(1)從中任取一球,小球上的數(shù)字為偶數(shù)
(2)從中任取一球,記下數(shù)字作為點(diǎn)A的橫坐標(biāo)x,把小球放回袋中,再?gòu)闹腥稳∫磺蛴浵聰?shù)字作為點(diǎn)A的縱坐標(biāo)y,點(diǎn)A(x,y)在函數(shù)y=的圖象上.
【答案】
(1)
解:∵在一個(gè)不透明的口袋里裝有分別標(biāo)有數(shù)字1、2、3三個(gè)小球,小球除數(shù)字不同外,其它無(wú)任何區(qū)別,
∴從中任取一球,球上的數(shù)字為偶數(shù)的概率是:
(2)
解:
列表得:
1 | 2 | 3 | |
1 | (1,1) | (1,2) | (1,3) |
2 | (2,1) | (2,2) | (2,3) |
3 | (3,1) | (3,2) | (3,3) |
則點(diǎn)M坐標(biāo)的所有可能的結(jié)果有九個(gè):(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、
(3,1)、(3,2)、(3,3),積為3的有2種,
所以點(diǎn)A(x,y)在函數(shù)y=的圖象上概率為:.
【解析】(1)由在一個(gè)不透明的口袋里裝有分別標(biāo)有數(shù)字1、2、3、4四個(gè)小球,小球除數(shù)字不同外,其它無(wú)任何區(qū)別,直接利用概率公式求解即可求得答案;
(2)列表得出所有等可能的情況數(shù),找出點(diǎn)(x,y)落在函數(shù)y=的圖象上的情況數(shù),即可求出所求的概率.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解列表法與樹狀圖法的相關(guān)知識(shí),掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率,以及對(duì)概率公式的理解,了解一般地,如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)在研究性學(xué)習(xí)中,收集到某制藥廠今年前5個(gè)月甲膠囊生產(chǎn)產(chǎn)量(單位:萬(wàn)盒)的數(shù)據(jù)如下表所示:
月份x | 1 | 2 | 3 | 4 | 5 |
y(萬(wàn)盒) | 4 | 4 | 5 | 6 | 6 |
(1)該同學(xué)為了求出y關(guān)于x的線性回歸方程 = + ,根據(jù)表中數(shù)據(jù)已經(jīng)正確計(jì)算出 =0.6,試求出 的值,并估計(jì)該廠6月份生產(chǎn)的甲膠囊產(chǎn)量數(shù);
(2)若某藥店現(xiàn)有該制藥廠今年二月份生產(chǎn)的甲膠囊4盒和三月份生產(chǎn)的甲膠囊5盒,小紅同學(xué)從中隨機(jī)購(gòu)買了3盒甲膠囊,后經(jīng)了解發(fā)現(xiàn)該制藥廠今年二月份生產(chǎn)的所有甲膠囊均存在質(zhì)量問(wèn)題.記小紅同學(xué)所購(gòu)買的3盒甲膠囊中存在質(zhì)量問(wèn)題的盒數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖的正方形網(wǎng)格中,點(diǎn)O在格點(diǎn)上,⊙O的半徑與小正方形的邊長(zhǎng)相等,請(qǐng)利用無(wú)刻度的直尺完成作圖,在圖(1)中畫出一個(gè)45°的圓周角,在圖(2)中畫出一個(gè)22.5°的圓周角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:y=kx(k<0),將直線y=kx沿y軸向下平移m(m>0)個(gè)單位得到直線y=kx﹣m,平移后的直線與拋物線y=ax2相交于A(x1 , y1),B(x2 , y2)兩點(diǎn),拋物線y=ax2經(jīng)過(guò)點(diǎn)P(6,﹣9).
(1)求a的值;
(2)如圖1,當(dāng)∠AOB<90°時(shí),求m的取值范圍;
(3)如圖2,將拋物線y=ax2向右平移一個(gè)單位,再向上平移n個(gè)單位(n>0).若第一象限的拋物線上存在點(diǎn)M,N兩點(diǎn),且M,N兩點(diǎn)關(guān)于直線y=x軸對(duì)稱,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接河南省第30屆青少年科技創(chuàng)新大賽,某中學(xué)向七年級(jí)學(xué)生征集科幻畫作品,李老師從七年級(jí)12個(gè)班中隨機(jī)抽取了A、B、C、D四個(gè)班,對(duì)征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖(如圖)
(1)李老師所調(diào)查的4個(gè)班征集到作品共件,其中B班征集到作品 , 請(qǐng)把圖補(bǔ)充完整;
(2)李老師所調(diào)查的四個(gè)班平均每個(gè)班征集到作品多少件?請(qǐng)估計(jì)全年級(jí)共征集到作品多少件?
(3)如果全年級(jí)參展作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生.現(xiàn)在要抽兩人去參加學(xué)校總結(jié)表彰座談會(huì),用樹狀圖或列表法求出恰好抽中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)為了鼓勵(lì)市民節(jié)約用水,計(jì)劃實(shí)行生活用水按階梯式水價(jià)計(jì)費(fèi),每月用水量不超過(guò)10噸(含10噸)時(shí),每噸按基礎(chǔ)價(jià)收費(fèi);每月用水量超過(guò)10噸時(shí),超過(guò)的部分每噸按調(diào)節(jié)價(jià)收費(fèi).例如,第一個(gè)月用水16噸,需交水費(fèi)17.8元,第二個(gè)月用水20噸,需交水費(fèi)23元.
(1)求每噸水的基礎(chǔ)價(jià)和調(diào)節(jié)價(jià)
(2)設(shè)每月用水量為n噸,應(yīng)交水費(fèi)為m元,寫出m與n之間的函數(shù)解析式;
(3)若某月用水12噸,應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,若AB=6,AD=10,∠ABC的平分線交AD于點(diǎn)E,交CD的延長(zhǎng)線于點(diǎn)F,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A.擲兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為
B.“對(duì)角線相等且相互垂直平分的四邊形是正方形”這一事件是必然事件
C.“同位角相等”這一事件是不可能事件
D.“鈍角三角形三條高所在直線的交點(diǎn)在三角形外部”這一事件是隨機(jī)事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)“全民閱讀”號(hào)召,某校在七年級(jí)800名學(xué)生中隨機(jī)抽取100名學(xué)生,對(duì)概念機(jī)學(xué)生在2015年全年閱讀中外名著的情況進(jìn)行調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生閱讀中外名著的本數(shù),最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了如圖所示的不完整的條形統(tǒng)計(jì)圖,其中閱讀了6本的人數(shù)占被調(diào)查人數(shù)的30%,根據(jù)圖中提供的信息,補(bǔ)全條形統(tǒng)計(jì)圖并估計(jì)該校七年級(jí)全體學(xué)生在2015年全年閱讀中外名著的總本數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com