【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=x的圖象交于點(diǎn)A、B,點(diǎn)B的橫坐標(biāo)是4.點(diǎn)P是第一象限內(nèi)反比例函數(shù)圖象上的動點(diǎn),且在直線AB的上方.

(1)若點(diǎn)P的坐標(biāo)是(1,4),直接寫出k的值和PAB的面積;

(2)設(shè)直線PA、PBx軸分別交于點(diǎn)M、N,求證:PMN是等腰三角形;

(3)設(shè)點(diǎn)Q是反比例函數(shù)圖象上位于P、B之間的動點(diǎn)(與點(diǎn)P、B不重合),連接AQ、BQ,比較∠PAQ與∠PBQ的大小,并說明理由.

【答案】(1)k=4,SPAB=15;(2)證明見解析;(3)PAQ=PBQ.

【解析】試題分析:(1)根據(jù)題意求出B點(diǎn)的坐標(biāo),然后利用待定系數(shù)法可求k的值;

(2)過點(diǎn)P作PH⊥x軸于H,然后根據(jù)反比例函數(shù)的解析式設(shè)出P點(diǎn)的坐標(biāo),然后可得方程組,求出PA、PB的解析式,然后得含m、n的點(diǎn)M、N的坐標(biāo),然后根據(jù)線段垂直平分線的性質(zhì)可求證;

(3)同(2)方法,利用等邊對等角和三角形的外角可證.

試題解析:(1)根據(jù)B點(diǎn)的橫坐標(biāo)求出B點(diǎn)的 (4,1),

(3) 同理可證,QC=QD,

利用等邊對等角和三角形的外角可證。如圖。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某報(bào)社為了了解市民獲取新聞的最主要途徑,開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖三種不完整的統(tǒng)計(jì)圖表.

組別

獲取新聞的最主要途徑

人數(shù)

A

電腦上網(wǎng)

280

B

手機(jī)上網(wǎng)

m

C

電視

140

D

報(bào)紙

n

E

其它

80

請根據(jù)圖表信息解答下列問題:

1)統(tǒng)計(jì)表中的m   ,n   ,并請補(bǔ)全條形統(tǒng)計(jì)圖;

2)扇形統(tǒng)計(jì)圖中D所對應(yīng)的圓心角的度數(shù)是   

3)若該市約有120萬人,請你估計(jì)其中將電腦上網(wǎng)手機(jī)上網(wǎng)作為獲取新聞的最主要途徑的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】食品安全受到全社會的廣泛關(guān)注,濟(jì)南市某中學(xué)對部分學(xué)生就食品安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩份尚不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題.

1)接受問卷調(diào)查的學(xué)生共有_____人,扇形統(tǒng)計(jì)圖中基本了解部分所對應(yīng)扇形的圓心角為_____.

2)請補(bǔ)全條形統(tǒng)計(jì)圖.

3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對食品安全知識達(dá)到了解基本了解程度的總?cè)藬?shù).

4)若從對食品安全知識達(dá)到了解程度的2個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

【答案】16090°;(2)補(bǔ)圖見解析;(3300;(4

【解析】分析:(1)根據(jù)了解很少的人數(shù)除以了解很少的人數(shù)所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應(yīng)扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;(3)用總?cè)藬?shù)乘以了解基本了解程度的人數(shù)所占的比例,即可求出達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);(4)根據(jù)題意列出表格,再根據(jù)概率公式即可得出答案.

詳解:(160;90°.

2)補(bǔ)全的條形統(tǒng)計(jì)圖如圖所示.

3)對食品安全知識達(dá)到了解基本了解的學(xué)生所占比例為,由樣本估計(jì)總體,該中學(xué)學(xué)生中對食品安全知識達(dá)到了解基本了解程度的總?cè)藬?shù)為.

4)列表法如表所示,

男生女生

男生

男生

女生

女生

男生

男生男生

男生女生

男生女生

男生

男生男生

男生女生

男生女生

女生

男生女生

男生女生

女生女生

女生

男生女生

女生女生

所有等可能的情況一共12種,其中選中1個(gè)男生和1個(gè)女生的情況有8種,所以恰好選中1個(gè)男生和1個(gè)女生的概率是.

點(diǎn)睛:本題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖以及用列表法或樹狀圖法求概率,根據(jù)題意求出總?cè)藬?shù)是解題的關(guān)鍵;注意運(yùn)用概率公式:概率=所求情況數(shù)與總情況數(shù)之比.

型】解答
結(jié)束】
24

【題目】為響應(yīng)國家全民閱讀的號召,某社區(qū)鼓勵居民到社區(qū)閱覽室借閱讀書,并統(tǒng)計(jì)每年的借閱人數(shù)和圖書借閱總量(單位:本),該閱覽室在2015年圖書借閱總量是7500本,2017年圖書借閱總量是10800.

1)求該社區(qū)的圖書借閱總量從2015年至2017年的年平均增長率.

2)已知2017年該社區(qū)居民借閱圖書人數(shù)有1350人,預(yù)計(jì)2018年達(dá)到1440人,如果2017年至2018年圖書借閱總量的增長率不低于2015年至2017年的年平均增長率,設(shè)2018年的人均借閱量比2017年增長a%,求a的值至少是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知單項(xiàng)式x3ya與單項(xiàng)式﹣5xby是同類項(xiàng),c是多項(xiàng)式2mn5mn3的次數(shù).

1)寫出ab,c的值;

2)若關(guān)于x的二次三項(xiàng)式ax2+bx+c的值是3,求代數(shù)式20192x26x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B都在數(shù)軸上,O為原點(diǎn).

(1)點(diǎn)B表示的數(shù)是_________________;

(2)若點(diǎn)B以每秒2個(gè)單位長度的速度沿?cái)?shù)軸向右運(yùn)動,則2秒后點(diǎn)B表示的數(shù)是________;

(3)若點(diǎn)A、B分別以每秒1個(gè)單位長度、3個(gè)單位長度的速度沿?cái)?shù)軸向右運(yùn)動,而點(diǎn)O不動,t秒后,A、B、O三個(gè)點(diǎn)中有一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)為端點(diǎn)的線段的中點(diǎn),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的面積為16cm2,對交線交于點(diǎn)O;以AB、AO為鄰邊作平行四邊AOC1B,對角線交于點(diǎn)O1,以AB、AO1為鄰邊作平行四邊形AO1C2B,…;依此類推,則平行四邊形AO4C5B的面積為( )

A. cm2 B. 1cm2 C. 2cm2 D. 4cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形紙片ABCD的邊長為2,翻折∠B、∠D,使兩個(gè)直角的頂點(diǎn)重合于對角線BD上一點(diǎn)P、EFGH分別是折痕(如圖2).設(shè)AEx(0<x<2),給出下列判斷:①當(dāng)x=1時(shí),點(diǎn)P是正方形ABCD的中心;②當(dāng)x時(shí),EF+GHAC;③當(dāng)0<x<2時(shí),六邊形AEFCHG面積的最大值是3;④當(dāng)0<x<2時(shí),六邊形AEFCHG周長的值不變.其中正確的選項(xiàng)是( )

A. ①③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為﹣7,點(diǎn)B表示的數(shù)為5,點(diǎn)C到點(diǎn)A,點(diǎn)B的距離相等,動點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動,設(shè)運(yùn)動的時(shí)間為tt>0)秒.

(1)點(diǎn)C表示的數(shù)是   ;

(2)求當(dāng)t等于多少秒時(shí),點(diǎn)P到達(dá)點(diǎn)B處;

(3)點(diǎn)P表示的數(shù)是   (用含有t的代數(shù)式表示);

(4)求當(dāng)t等于多少秒時(shí),PC之間的距離為2個(gè)單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行猜謎語大賽,甲、乙兩隊(duì)各有5名選手參賽。他們的成績(滿分100分,兩個(gè)1號隊(duì)員的成績均未統(tǒng)計(jì))如圖所示

成績統(tǒng)計(jì)分析表:

平均數(shù)

中位數(shù)

眾數(shù)

方差

優(yōu)秀率

甲隊(duì)

85

85

70

80%

乙隊(duì)

85

160

根據(jù)以上材料

(1)計(jì)算出甲、乙兩隊(duì)1號選手的成績;

(2)補(bǔ)充完成成績統(tǒng)計(jì)圖和成績統(tǒng)計(jì)分析表.

查看答案和解析>>

同步練習(xí)冊答案