【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長(zhǎng)線上,連接EA、EC.
(1)如圖1,若點(diǎn)P在線段AB的延長(zhǎng)線上,求證:EA=EC;
(2)若點(diǎn)P在線段AB上.
①如圖2,連接AC,當(dāng)P為AB的中點(diǎn)時(shí),判斷△ACE的形狀,并說明理由;
②如圖3,設(shè)AB=a,BP=b,當(dāng)EP平分∠AEC時(shí),求a:b及∠AEC的度數(shù).
【答案】
(1)
解:∵四邊形ABCD和四邊形BPEF是正方形,
∴AB=BC,BP=BF,
∴AP=CF,
在△APE和△CFE中,
,
∴△APE≌△CFE,
∴EA=EC
(2)
解:①∵P為AB的中點(diǎn),
∴PA=PB,又PB=PE,
∴PA=PE,
∴∠PAE=45°,又∠DAC=45°,
∴∠CAE=90°,即△ACE是直角三角形;
②∵EP平分∠AEC,EP⊥AG,
∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a
∵PE∥CF,
∴ ,即 = ,
解得,a= b;
作GH⊥AC于H,
∵∠CAB=45°,
∴HG= AG= ×(2 b﹣2b)=(2﹣ )b,又BG=2b﹣a=(2﹣ )b,
∴GH=GB,GH⊥AC,GB⊥BC,
∴∠HCG=∠BCG,
∵PE∥CF,
∴∠PEG=∠BCG,
∴∠AEC=∠ACB=45°.
∴a:b= :1;∴∠AEC=45°.
【解析】(1)根據(jù)正方形的性質(zhì)和全等三角形的判定定理證明△APE≌△CFE,根據(jù)全等三角形的性質(zhì)證明結(jié)論;(2)①根據(jù)正方形的性質(zhì)、等腰直角三角形的性質(zhì)解答;②根據(jù)PE∥CF,得到 ,代入a、b的值計(jì)算求出a:b,根據(jù)角平分線的判定定理得到∠HCG=∠BCG,證明∠AEC=∠ACB,即可求出∠AEC的度數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AM切⊙O于點(diǎn)A,BD⊥AM于點(diǎn)D,BD交⊙O于點(diǎn)C,OC平分∠AOB.求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°
(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請(qǐng)標(biāo)明字母) ①作線段AC的垂直平分線l,交AC于點(diǎn)O;
②連接BO并延長(zhǎng),在BO的延長(zhǎng)線上截取OD,使得OD=OB;
③連接DA、DC
(2)判斷四邊形ABCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax+c(a>0)的圖象與x軸的負(fù)半軸和正半軸分別交于A、B兩點(diǎn),與y軸交于點(diǎn)C,它的頂點(diǎn)為P,直線CP與過點(diǎn)B且垂直于x軸的直線交于點(diǎn)D,且CP:PD=2:3
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若tan∠PDB= ,求這個(gè)二次函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為更好地開展“傳統(tǒng)文化進(jìn)校園”活動(dòng),隨機(jī)抽查了部分學(xué)生,了解他們最喜愛的傳統(tǒng)文化項(xiàng)目類型(分為書法、圍棋、戲劇、國(guó)畫共4類),并將統(tǒng)計(jì)結(jié)果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖. 最喜愛的傳統(tǒng)文化項(xiàng)目類型頻數(shù)分布表
項(xiàng)目類型 | 頻數(shù) | 頻率 |
書法類 | 18 | a |
圍棋類 | 14 | 0.28 |
喜劇類 | 8 | 0.16 |
國(guó)畫類 | b | 0.20 |
根據(jù)以上信息完成下列問題:
(1)直接寫出頻數(shù)分布表中a的值;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若全校共有學(xué)生1500名,估計(jì)該校最喜愛圍棋的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三點(diǎn),D(1,m)是一個(gè)動(dòng)點(diǎn),當(dāng)△ACD的周長(zhǎng)最小時(shí),△ABD的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)C(3,0),函數(shù)y= (k>0,x>0)的圖象經(jīng)過OABC的頂點(diǎn)A(m,n)和邊BC的中點(diǎn)D.
(1)求m的值;
(2)若△OAD的面積等于6,求k的值;
(3)若P為函數(shù)y═ (k>0,x>0)的圖象上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作直線l⊥x軸于點(diǎn)M,直線l與x軸上方的OABC的一邊交于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為t,當(dāng) 時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,輪船從點(diǎn)A處出發(fā),先航行至位于點(diǎn)A的南偏西15°且與點(diǎn)A相距100km的點(diǎn)B處,再航行至位于點(diǎn)B的北偏東75°且與點(diǎn)B相距200km的點(diǎn)C處.
(1)求點(diǎn)C與點(diǎn)A的距離(精確到1km);
(2)確定點(diǎn)C相對(duì)于點(diǎn)A的方向.
(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com