【題目】平面直角坐標(biāo)系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三點(diǎn),D(1,m)是一個(gè)動(dòng)點(diǎn),當(dāng)△ACD的周長最小時(shí),△ABD的面積為(
A.
B.
C.
D.

【答案】C
【解析】解:由題可得,點(diǎn)C關(guān)于直線x=1的對(duì)稱點(diǎn)E的坐標(biāo)為(2,﹣1), 設(shè)直線AE的解析式為y=kx+b,則
,
解得 ,
∴y=﹣ x﹣
將D(1,m)代入,得
m=﹣ =﹣ ,
即點(diǎn)D的坐標(biāo)為(1,﹣ ),
∴當(dāng)△ACD的周長最小時(shí),△ABD的面積= ×AB×|﹣ |= ×4× =
故選(C)
先根據(jù)△ACD的周長最小,求出點(diǎn)C關(guān)于直線x=1對(duì)稱的點(diǎn)E的坐標(biāo),再運(yùn)用待定系數(shù)法求得直線AE的解析式,并把D(1,m)代入,求得D的坐標(biāo),最后計(jì)算,△ABD的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,P為△ABC內(nèi)一點(diǎn),連接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一個(gè)三角形與△ABC相似,那么就稱P為△ABC的自相似點(diǎn).
(1)如圖②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中線,過點(diǎn)B作BE丄CD,垂足為E.試說明E是△ABC的自相似點(diǎn);
(2)在△ABC中,∠A<∠B<∠C. ①如圖③,利用尺規(guī)作出△ABC的自相似點(diǎn)P(寫出作法并保留作圖痕跡);
②若△ABC的內(nèi)心P是該三角形的自相似點(diǎn),求該三角形三個(gè)內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點(diǎn),拋物線y=﹣x2+bx+c過A、B兩點(diǎn),且與x軸交于另一點(diǎn)C.

(1)求b、c的值;
(2)如圖1,點(diǎn)D為AC的中點(diǎn),點(diǎn)E在線段BD上,且BE=2ED,連接CE并延長交拋物線于點(diǎn)M,求點(diǎn)M的坐標(biāo);
(3)將直線AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)15°后交y軸于點(diǎn)G,連接CG,如圖2,P為△ACG內(nèi)一點(diǎn),連接PA、PC、PG,分別以AP、AG為邊,在他們的左側(cè)作等邊△APR,等邊△AGQ,連接QR
①求證:PG=RQ;
②求PA+PC+PG的最小值,并求出當(dāng)PA+PC+PG取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2﹣2x﹣3的圖象如圖所示,若線段AB在x軸上,且AB為2 個(gè)單位長度,以AB為邊作等邊△ABC,使點(diǎn)C落在該函數(shù)y軸右側(cè)的圖象上,則點(diǎn)C的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長線上,連接EA、EC.

(1)如圖1,若點(diǎn)P在線段AB的延長線上,求證:EA=EC;
(2)若點(diǎn)P在線段AB上.
①如圖2,連接AC,當(dāng)P為AB的中點(diǎn)時(shí),判斷△ACE的形狀,并說明理由;
②如圖3,設(shè)AB=a,BP=b,當(dāng)EP平分∠AEC時(shí),求a:b及∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過(﹣1,m2+2m+1)、(0,m2+2m+2)兩點(diǎn),其中m為常數(shù).
(1)求b的值,并用含m的代數(shù)式表示c;
(2)若拋物線y=x2+bx+c與x軸有公共點(diǎn),求m的值;
(3)設(shè)(a,y1)、(a+2,y2)是拋物線y=x2+bx+c上的兩點(diǎn),請(qǐng)比較y2﹣y1與0的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程和不等式組:
(1) + =1
(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明從點(diǎn)A處出發(fā),沿著坡角為α的斜坡向上走了0.65千米到達(dá)點(diǎn)B,sinα= ,然后又沿著坡度為i=1:4的斜坡向上走了1千米達(dá)到點(diǎn)C.問小明從A點(diǎn)到點(diǎn)C上升的高度CD是多少千米(結(jié)果保留根號(hào))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,點(diǎn)P為AB邊上一動(dòng)點(diǎn),若△PAD與△PBC是相似三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)是(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案