【題目】已知∠MON=150°,∠AOB=90°,OC平分∠MOB.
(1)如圖1,若OA與OM重合時,求∠BON的度數(shù);
(2)如圖2,若∠AOC=35°,求∠BON的度數(shù);
(3)當∠AOB繞點O逆時針旋轉(zhuǎn)到如圖3的位置,探究∠AOC與∠BON的數(shù)量關(guān)系,并說明理由.
【答案】(1)60°;(2)40°;(3)∠BON=2∠AOC-30°,理由見解析.
【解析】
(1)根據(jù)角之間的關(guān)系,即可求解;
(2)根據(jù)角平分線和角之間的關(guān)系,即可求解;
(3)根據(jù)旋轉(zhuǎn)和角平分線的性質(zhì),理清角之間的關(guān)系,求解即可.
(1)∵∠MON=150°,∠AOB=90°,
∴∠BON=∠MON-∠AOB=150°-90°=60°;
(2)∵∠AOB=90°,∠AOC=35°,
∴∠BOC=∠AOB-∠AOC=90°-35°=55°
∵OC平分∠MOB
∴∠MOB=2∠BOC=2×55°=110°
∵∠MON=150°,
∴∠BON=∠MON-∠MOB=150°-110°=40°;
(3)∠BON=2∠AOC-30°;理由如下:
∵∠AOB=90°
∴∠BOC=∠AOB-∠AOC=90°-∠AOC
∵OC平分∠MOB
∴∠MOB=2∠BOC=2(90°-∠AOC)
∵∠MON=150°,
∴∠BON=∠MON-∠MOB=150°-2(90°-∠AOC)=2∠AOC-30°.
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD內(nèi)部有若干個點,用這些點以及正方形ABCD的頂點A、B、C、D把原正方形分割成一些三角形(互相不重疊):
(1)填寫下表:
正方形ABCD內(nèi)點的個數(shù) | 1 | 2 | 3 | 4 | … | n |
分割成的三角形的個數(shù) | 4 | 6 | … |
(2)原正方形能否被分割成2016個三角形?若能,求此時正方形ABCD內(nèi)部有多少個點?若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了取得扶貧工作的勝利,某市對扶貧工作人員進行了扶貧知識的培訓與測試,隨機抽取了部分人員的測試成績作為樣本,并將成績劃分為四個不同的等級,繪制成不完整統(tǒng)計圖如下圖,請根據(jù)圖中的信息,解答下列問題;
(1)求樣本容量;
(2)補全條形圖,并填空: ;
(3)若全市有5000人參加了本次測試,估計本次測試成績?yōu)?/span>級的人數(shù)為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD中,點E在CD上,點F在AB上,連接AE、CF、DF、BE,∠DAE=∠BCF.
(1)如圖1,求證:四邊形DFBE是平行四邊形;
(2)如圖2,若E是CD的中點,連接GH,在不添加任何輔助線的情況下,請直接寫出圖2中以GH為邊或以GH為對角線的所有平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點F在邊AC上,并且CF=1,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與直線交于C,D兩點,其中點C在y軸上,點D的坐標為。點P是y軸右側(cè)的拋物線上一動點,過點P作PE⊥x軸于點E,交CD于點F.
(1)求拋物線的解析式;
(2)若點P的橫坐標為m,當m為何值時,以O,C,P,F為頂點的四邊形是平行四邊形?請說明理由;
(3)若存在點P,使∠PCF=450,請直接寫出相應的點P的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)分別填在表示它所在的集合里:
12,,,,
(1)正數(shù)集合:{ }; (2)負數(shù)集合:{ };
(3)整數(shù)集合;{ }; (4)分數(shù)集合:{ }.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本(單位:元)、銷售價(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請解釋圖中點D的橫坐標、縱坐標的實際意義;
(2)求線段AB所表示的與x之間的函數(shù)表達式;
(3)當該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知D、E分別為△ABC的邊AC、BC的中點,AF為△ABD的中線,連接EF,若四邊形AFEC的面積為15,且AB=8,則△ABC中AB邊上高的長為( )
A.3B.6C.9D.無法確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com