【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),C(0,4)兩點,與x軸交于另一點B,

(1)求拋物線的解析式;
(2)求P在第一象限的拋物線上,P點的橫坐標(biāo)為t,過點P向x軸做垂線交直線BC于點Q,設(shè)線段PQ的長為m,求m與t之間的函數(shù)關(guān)系式并求出m的最大值;
(3)在(2)的條件下,拋物線上一點D的縱坐標(biāo)為m的最大值,連接BD,在拋物線是否存在點E(不與點A,B,C重合)使得∠DBE=45°?若不存在.請說明理由;若存在請求E點的坐標(biāo).

【答案】
(1)

解:拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0)、C(0,4)兩點,

解得

∴拋物線的解析式y(tǒng)=﹣x2+3x+4


(2)

解:令﹣x2+3x+4=0,

解得x1=﹣1,x2=4,

∴B(4,0)

設(shè)直線BC的解析式為y=kx+a

解得 ,

∴直線BC的解析式為y=﹣x+4

設(shè)P點的坐標(biāo)為(t,﹣t2+3t+4),則Q點的坐標(biāo)為(t,﹣t+4)

∴m=(﹣t2+3t+4)﹣(﹣t+4)=﹣(t﹣2)2+4

整理得m=﹣(t﹣2)2+4,

∴當(dāng)t=2時,m的最大值為4


(3)

解:存在

∵拋物線一點D的縱坐標(biāo)為m的最大值4,

∴﹣x2+3x+4=4,解得x1=0(舍),x2=3

∴D(3,4),CD=3

∵C(0,4),

∴CD∥x軸,

∵OC=OB=4,

∴△BOC為直角三角形,

過點D作DH⊥BC于H,過點E作EF⊥x于點F,在△CDB中,CD=3,∠DCB=45°

∴CH=DH=

∵CB=4 ,∴BH=CB﹣CH=

∵∠DBE=∠CBO=45°

∴∠DBE﹣∠CBE=∠CBO﹣∠CBE,

即∠DBC=∠EBF

∴tan∠DBC= = =

設(shè)EF=3a∴BF=5a

∴OF=5a﹣4

∴F(4﹣5a,0),E(4﹣5a,3a)

∵點E在拋物線上

∴3a=﹣(4﹣5a)2+3(4﹣5a)+4

解得a1=0 a2=

∴E(﹣ , ).


【解析】(1)把點A、B的坐標(biāo)代入拋物線解析式,解關(guān)于b、c的方程組求出b、c的值即可得到拋物線解析式,令y=0,解關(guān)于x的一元二次方程即可得到點C的坐標(biāo);(2)根據(jù)拋物線的解析式y(tǒng)=﹣x2+3x+4,令y=0求得點B的坐標(biāo)為(4.0),設(shè)直線BC的解析式為y=kx+a把點B、C的坐標(biāo)代入直線BC的解析式為y=kx+a,解關(guān)于k、a的方程組求出k、a的值,所以直線BC的解析式為y=﹣x+4,設(shè)P點的坐標(biāo)為(t,﹣t2+3t+4),則Q點的坐標(biāo)為(t,﹣t+4),所以m=(﹣t2+3t+4)﹣(﹣t+4),整理得m=﹣(t﹣2)2+4,根據(jù)關(guān)于m、t的二次函數(shù)即可求得.(3)根據(jù)m的最大值是4,代入y=﹣x2+3x+4,可求得D點的坐標(biāo)(3,4),過D點作DH⊥BC,過E點作EF⊥x軸,由OC=OB=4得△DCB為等腰直角三角形,從而得出△CDH為等腰直角三角形,通過等腰直角三角形求得CN、BH的值,然后根據(jù)三角形相似求得EF、BF的關(guān)系,設(shè)出E點的坐標(biāo),然后代入y=﹣x2+3x+4即可求得.
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計劃撥款9萬元從廠家購進50臺電視機已知該廠家生產(chǎn)三種不同型號的電視機,出廠價分別為:甲種每臺1500元,乙種每臺2100元,丙種每臺2500元.

若商場同時購進其中兩種不同型號電視機共50臺,用去9萬元,請研究一下商場的進貨方案;

若商場銷售一臺甲種電視機可獲利150元,銷售一臺乙種電視機可獲利200元,銷售一臺丙種電視機可獲利250在同時購進兩種不同型號電視機的方案中,為使銷售時獲利最多,你選擇哪種進貨方案;

若商場準(zhǔn)備用9萬元同時購進三種不同的電視機50臺,請你設(shè)計進貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,四邊形ABCD中,BC∥AD,∠A=90°,點P從A點出發(fā),沿折線AB→BC→CD運動,到點D時停止,已知△PAD的面積s與點P運動的路程x的函數(shù)圖象如圖②所示,則點P從開始到停止運動的總路程為( )

A.4
B.2+
C.5
D.4+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,隧道的截面由半圓和長方形構(gòu)成,長方形的長BC為8m,寬AB為1m,該隧道內(nèi)設(shè)雙向行駛的車道(共有2條車道),若現(xiàn)有一輛貨運卡車高4m,寬2.3m。則這輛貨運卡車能否通過該隧道?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OEFG的頂點E的坐標(biāo)為(4,0),頂點G的坐標(biāo)為(0,2),將矩形OEFG繞點O逆時針旋轉(zhuǎn),使點F落在y軸的點N處,得到矩形OMNP,OM與GF交于點A.

(1)求圖象經(jīng)過點A的反比例函數(shù)的解析式;
(2)設(shè)(2)中的反比例函數(shù)圖象交EF于點B,直接寫出直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑畫弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結(jié)論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正確的是(
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值: ÷(a+2﹣ ),其中x2﹣2 x+a=0有兩個不相等的實數(shù)根,且a為非負整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)藥研究生開發(fā)了一種新藥,在實驗藥效時發(fā)現(xiàn),如果成人按規(guī)劑量服用,那么服用藥后2h時血液中含藥量最高,達每毫升6ug,接著逐步衰減,10h時血液中含藥量每毫升3ug,每毫升血液中含藥量y(ug)隨時間x(h)的變化如圖所示,當(dāng)成人按規(guī)定劑量服藥后.

1分別求出x≤2和x>2時,y與x之間的函數(shù)關(guān)系式;

2如果每毫升血液含藥量為4ug或4ug以上時在治療疾病時是有效的,那么這個有效時間是多長?每天至少吃幾次藥療效最好?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四川雅安發(fā)生地震后,某校學(xué)生會向全校1900名學(xué)生發(fā)起了心系雅安捐款活動,為了解捐款情況,學(xué)生會隨機調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列是問題:

(1)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中m的值是

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計該校本次活動捐款金額為10元的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊答案