(2010•聊城)如圖,過點Q(0,3.5)的一次函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于點P,能表示這個一次函數(shù)圖象的方程是( )

A.3x-2y+3.5=0
B.3x-2y-3.5=0
C.3x-2y+7=0
D.3x+2y-7=0
【答案】分析:如果設(shè)這個一次函數(shù)的解析式為y=kx+b,那么根據(jù)這條直線經(jīng)過點P(1,2)和點Q(0,3.5),用待定系數(shù)法即可得出此一次函數(shù)的解析式.
解答:解:設(shè)這個一次函數(shù)的解析式為y=kx+b.
∵這條直線經(jīng)過點P(1,2)和點Q(0,3.5),

解得
故這個一次函數(shù)的解析式為y=-1.5x+3.5,
即:3x+2y-7=0.
故選D.
點評:本題主要考查了一次函數(shù)與方程組的關(guān)系及用待定系數(shù)法求一次函數(shù)的解析式.
兩個一次函數(shù)圖象的交點坐標(biāo)就是對應(yīng)的二元一次方程組的解,反之,二元一次方程組的解就是對應(yīng)的兩個一次函數(shù)圖象的交點坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•聊城)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標(biāo);
(3)設(shè)點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省聊城市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•聊城)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標(biāo);
(3)設(shè)點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省聊城市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•聊城)如圖,過點Q(0,3.5)的一次函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于點P,能表示這個一次函數(shù)圖象的方程是( )

A.3x-2y+3.5=0
B.3x-2y-3.5=0
C.3x-2y+7=0
D.3x+2y-7=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(03)(解析版) 題型:填空題

(2010•聊城)如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,Rt△AB'C'可以看作是由Rt△ABC繞點A逆時針方向旋轉(zhuǎn)60°得到的,則線段B′C的長為   

查看答案和解析>>

同步練習(xí)冊答案