【題目】
(1) 填空:AB=_________,BC= ;
(2) 若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒3個(gè)單位長(zhǎng)度和7個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,用含t的代數(shù)式表示BC和AB的長(zhǎng),并探索:BC-AB的值是否隨著時(shí)間t的變化而改變?請(qǐng)說(shuō)明理由
【答案】(1)、AB=14;BC=20;(2)、不變
【解析】試題分析:(1)、根據(jù)兩點(diǎn)之間的距離公式求出AB和BC的長(zhǎng)度;(2)、首先分別用含t的代數(shù)式表示A、B、C三點(diǎn)所表示的數(shù),然后分別求出BC和AB的長(zhǎng)度,然后進(jìn)行計(jì)算.
試題解析:(1)、AB=﹣10﹣(﹣24)=14,BC=10﹣(﹣10)=20.
(2)、不變. ∵經(jīng)過(guò)t秒后,A、B、C三點(diǎn)所對(duì)應(yīng)的數(shù)分別是﹣24﹣t,﹣10+3t,10+7t,
∴BC=(10+7t)﹣(﹣10+3t)=4t+20, AB=(﹣10+3t)﹣(﹣24﹣t)=4t+14,
∴BC﹣AB=(4t+20)﹣(4t+14)=6. ∴BC﹣AB的值不會(huì)隨著時(shí)間t的變化而改變.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次射擊練習(xí)中,某運(yùn)動(dòng)員命中的環(huán)數(shù)是7,9,9,10,10,其中9是( )
A. 平均數(shù) B. 中位數(shù) C. 眾數(shù) D. 既是平均數(shù)和中位數(shù),又是眾數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方體的體積是1620,它的長(zhǎng)、寬、高的比是5:4:3,問(wèn)長(zhǎng)方體的長(zhǎng)、寬、高是無(wú)理數(shù)嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的角平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠CEF的度數(shù)是______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)三角形三個(gè)內(nèi)角度數(shù)的比為2:7:4,那么這個(gè)三角形是( )
A. 直角三角形 B. 銳角三角形 C. 鈍角三角形 D. 等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)內(nèi)角∠A、∠B、∠C滿足關(guān)系式∠B+∠C=∠A,則此三角形( 。
A. 一定有一個(gè)內(nèi)角為45° B. 一定有一個(gè)內(nèi)角為60°
C. 一定是直角三角形 D. 一定是鈍角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點(diǎn)C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長(zhǎng);
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,閱讀下面的題目及分析過(guò)程,并按要求進(jìn)行證明.
已知:如圖,E是BC的中點(diǎn),點(diǎn)A在DE上,且∠BAE=∠CDE. 求證:AB=CD.
分析:證明兩條線段相等,常用的一般方法是應(yīng)用全等三角形或等腰三角形的判定和性質(zhì),觀察本題中要要證AB=CD,必須添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形或等腰三角形請(qǐng)用二種不同的方法證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com