【題目】如圖,某校教學樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據有關部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學校為了消除安全隱患,決定對斜坡CD進行改造,在保持坡腳C不動的情況下,學校至少要把坡頂D向后水平移動多少米才能保證教學樓的安全?(結果取整數)
(參考數據:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)
【答案】學校至少要把坡頂D向后水平移動7米才能保證教學樓的安全.
【解析】試題分析:假設點D移到D′的位置時,恰好∠α=39°,過點D作DE⊥AC于點E,作D′E′⊥AC于點E′,根據銳角三角函數的定義求出DE、CE、CE′的長,進而可得出結論.
試題解析:假設點D移到D′的位置時,恰好∠α=39°,過點D作DE⊥AC于點E,作D′E′⊥AC于點E′,
∵CD=12米,∠DCE=60°,
∴DE=CDsin60°=12×=6米,CE=CDcos60°=12×=6米.
∵DE⊥AC,D′E′⊥AC,DD′∥CE′,
∴四邊形DEE′D′是矩形,
∴DE=D′E′=6米.
∵∠D′CE′=39°,
∴CE′=≈≈12.8,
∴EE′=CE′﹣CE=12.8﹣6=6.8≈7(米).
答:學校至少要把坡頂D向后水平移動7米才能保證教學樓的安全.
科目:初中數學 來源: 題型:
【題目】某工廠現在平均每天比原計劃多生產 50 臺機器,現在生產 600 臺機器所需時間與原計劃生產 450 臺機器所需時間相同.
(1)現在平均每天生產多少臺機器;
(2)生產 3000 臺機器,現在比原計劃提前幾天完成.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】初一(1)班針對“你最喜愛的課外活動項目”對全班學生進行調查(每名學生分別選一個活動項目),并根據調查結果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.
男、女生所選項目人數統(tǒng)計表
項目 | 男生(人數) | 女生(人數) |
機器人 | 7 | 9 |
3D打印 | m | 4 |
航模 | 2 | 2 |
其他 | 5 | n |
根據以上信息解決下列問題:
(1)m=_____,n=_____;
(2)扇形統(tǒng)計圖中機器人項目所對應扇形的圓心角度數為_____°;
(3)從選航模項目的4名學生中隨機選取2名學生參加學校航模興趣小組訓練,請用列舉法(畫樹狀圖或列表)求所選取的2名學生中恰好有1名男生、1名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請你數一數,圖中有多少個小于平角的角;
(2)求出∠BOD的度數;
(3)請通過計算說明OE是否平分∠BOC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線(a≠0)經過A(-1,0),B(2,0)兩點,與y軸交于點C.
(1)求拋物線的解析式及頂點D的坐標;
(2)點P在拋物線的對稱軸上,當△ACP的周長最小時,求出點P的坐標;
(3) 點N在拋物線上,點M在拋物線的對稱軸上,是否存在以點N為直角頂點的Rt△DNM與Rt△BOC相似,若存在,請求出所有符合條件的點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司招聘職員,對甲、乙兩位候選人進行了面試,面試中包括形體、口才、專業(yè)知識,他們的成績(百分制)如下表:
(1)如果公司根據經營性質和崗位要求,以面試成績中形體、口才、專業(yè)知識按照的比值確定成績,請計算甲、乙兩人各自的平均成績,看看誰將被錄。
(2)如果公司根據經營性質和崗位要求,以面試成績中形體占,口才占,專業(yè)知識占確定成績,那么你認為該公司應該錄取誰?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】暑假期間,小剛一家乘車去離家380公里的某景區(qū)旅游,他們離家的距離y(km)與汽車行駛時間x(h)之間的函數圖象如圖所示.
(1)從小剛家到該景區(qū)乘車一共用了多少時間?
(2)求線段AB對應的函數解析式;
(3)小剛一家出發(fā)2.5小時時離目的地多遠?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用表示一列數的第個數,、,從第二個數起,每個數的2倍是其左右相鄰兩個數之和,如,.
(1)計算:______,______.(直接寫出結果)
(2)根據(1)的結果,推測等于______.(直接寫出結果)
(3)猜想第(為正整數)個數等于______.(直接寫出結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在三角形ABC中,D是BC上一點,且∠CDA=∠CAB.(注:三角形內角和等于180°)
(1)求證:∠CDA=∠DAB+∠DBA;
(2)如圖2,MN是經過點D的一條直線,若直線MN交AC邊于點E,且∠CDE=∠CAD.求證:∠AED+∠EAB=180°;
(3)將圖2中的直線MN繞點D旋轉,使它與射線AB交于點P(點P不與點A,B重合).在圖3中畫出直線MN,并用等式表示∠CAD,∠BDP,∠BPD這三個角之間的數量關系,不需證明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com