【題目】如圖,已知正方形ABCD,點E在CB的延長線上,聯(lián)結(jié)AE、DE,DE與邊AB交于點F,F(xiàn)G∥BE且與AE交于點G.
(1)求證:GF=BF.
(2)在BC邊上取點M,使得BM=BE,聯(lián)結(jié)AM交DE于點O.求證:FOED=ODEF.

【答案】
(1)證明:∵四邊形ABCD是正方形,

∴AD∥BC,AB∥CD,AD=CD,

∵GF∥BE,

∴GF∥BC,

∴GF∥AD,

,

∵AB∥CD,

,

∵AD=CD,

∴GF=BF;


(2)證明:延長GF交AM于H,

∵GF∥BC,

∴FH∥BC,

,

∵BM=BE,

∴GF=FH,

∵GF∥AD,

,

,

,

∴FOED=ODEF.


【解析】(1)根據(jù)已知條件可得到GF∥AD,則有 ,由BF∥CD可得到 ,又因為AD=CD,可得到GF=FB;(2)延長GF交AM于H,根據(jù)平行線分線段成比例定理得到 ,由于BM=BE,得到GF=FH,由GF∥AD,得到 ,等量代換得到 ,即 ,于是得到結(jié)論.
【考點精析】本題主要考查了正方形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABC1D1的邊長為1,延長C1D1到A1 , 以A1C1為邊向右作正方形A1C1C2D2 , 延長C2D2到A2 , 以A2C2為邊向右作正方形A2C2C3D3(如圖所示),以此類推….若A1C1=2,且點A,D2 , D3 , …,D10都在同一直線上,則正方形A9C9C10D10的邊長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課本中有一道作業(yè)題: 有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.問加工成的正方形零件的邊長是多少mm?
小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問題.


(1)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少mm?請你計算.
(2)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達到這個最大值時矩形零件的兩條邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從A地到B地的公路需經(jīng)過C地,圖中AC=10千米,∠CAB=25°,∠CBA=37°,因城市規(guī)劃的需要,將在A、B兩地之間修建一條筆直的公路.
(1)求改直的公路AB的長;
(2)問公路改直后比原來縮短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,AC與BD交于O點,DO:BO=1:2,點E在CB的延長線上,如果SAOD:SABE=1:3,那么BC:BE=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,點D在邊BC上,∠DAB=∠B,點E在邊AC上,滿足AECD=ADCE.
(1)求證:DE∥AB;
(2)如果點F是DE延長線上一點,且BD是DF和AB的比例中項,聯(lián)結(jié)AF.求證:DF=AF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的四個頂點正好落在四條平行線上,并且從上到下每兩條平行線間的距離都是1,如果AB:BC=3:4,那么AB的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AB=5,tanA= ,將△ABC沿直線l翻折,恰好使點A與點B重合,直線l分別交邊AB、AC于點D、E;
(1)求△ABC的面積;
(2)求sin∠CBE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點E在BC邊上,點F在BC延長線上,且∠CDF=∠BAE.
(1)求證:四邊形AEFD是平行四邊形;
(2)若DF=3,DE=4,AD=5,求CD的長度.

查看答案和解析>>

同步練習冊答案