【題目】如圖,在ABC中,ABAC10,BC16,點(diǎn)D是邊BC上(不與B,C重合)一動(dòng)點(diǎn),∠ADE=∠B,DEAC于點(diǎn)E

1)求證:ABD∽△DCE

2)若DCE為直角三角形,求BD

3)若以AE為直徑的圓與邊BC相切,求AD;

【答案】1)見(jiàn)解析;(2BD8;(35

【解析】

1)證明ADBDEC,即可得出結(jié)論;

2)過(guò)點(diǎn)AAGBCG,分兩種情況討論,當(dāng)AED90°時(shí),當(dāng)CDE90°時(shí)通過(guò)三角形相似即可求得;

3)取AE的中點(diǎn)O,過(guò)OOFBCF,設(shè)BDxAEy,可分別表示OAOC,由OFAG,得出,得出關(guān)于x的方程,解出x即可求出DG長(zhǎng),則AD長(zhǎng)可求出.

1)證明:ABAC

∴∠BC,

∵∠ADEB

∴∠ADEC,

∵∠ADB180°ADECDEDEC180°CCDE,

∴∠ADBDEC

∵∠BC,

∴△ABD∽△DCE

2)解:如圖1,過(guò)點(diǎn)AAGBCG

CGBC8,

AG6,

設(shè)ADEBCα

∴cosα

當(dāng)AED90°時(shí),

ABAC

∴∠BC,

∵∠ADEB

∴∠ADEC

∴△ADE∽△ACD,

∵∠AED90°

∴∠ADC90°,

ADBC

ABAC,

BDCD

BD8

當(dāng)CDE90°時(shí),由(1)知CDE∽△BAD

∵∠CDE90°,

∴∠BAD90°,

∵cosαAB10,

∴cosB

BD

即:BD8

3)解:如圖2,取AE的中點(diǎn)O,過(guò)OOFBCF,

設(shè)BDxAEy,

CDBCBD16xCEACAE10y,

由(1)知,ABD∽△DCE,

,

OA,

OCACOA

10

AE為直徑的圓與邊BC相切,

OFOA

AGBC,OFBC

OFAG,

OCAGOFAC,

x8+x8

DG,

Rt△AGD中,根據(jù)勾股定理得,AD5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中成反比例成正比例,函數(shù)的自變量的取值范圍是,且當(dāng)時(shí),的值均為。

請(qǐng)對(duì)該函數(shù)及其圖象進(jìn)行如下探究:

1)解析式探究:根據(jù)給定的條件,可以確定出該函數(shù)的解析式為:

2)函數(shù)圖象探宄:①根據(jù)解析式,選取適當(dāng)?shù)淖宰兞?/span>,并完成下表:

...

...

②根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫(huà)出函數(shù)圖象.

3)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:

①當(dāng),時(shí),函數(shù)值分別為,則的大小關(guān)系為: (用表示)

②若直線與該函數(shù)圖象有兩個(gè)交點(diǎn),則的取值范圍是 ,此時(shí),的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c的圖象的一部分,對(duì)稱軸是直線x1

①b24ac ②4a+2b+c0;不等式ax2+bx+c0的解集是x3.5若(﹣2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1y2.上述4個(gè)判斷中,正確的是(  )

A.①②B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠AOB60°,半徑為2的⊙M與邊OA、OB相切,若將⊙M水平向左平移,當(dāng)⊙M與邊OA相交時(shí),設(shè)交點(diǎn)為EF,且EF6,則平移的距離為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠AOB60°,半徑為2的⊙M與邊OA、OB相切,若將⊙M水平向左平移,當(dāng)⊙M與邊OA相交時(shí),設(shè)交點(diǎn)為EF,且EF6,則平移的距離為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知D是⊙O上一點(diǎn),AB是直徑,∠BAD的平分線交⊙O于點(diǎn)E,⊙O的切線BCOE的延長(zhǎng)線于點(diǎn)C,連接ODCD

1)求證:CDOD

2)若AB2,填空:

當(dāng)CE   時(shí),四邊形BCDO是正方形.

作△AEO關(guān)于直線OE對(duì)稱的△FEO,連接BFBE,當(dāng)四邊形BEOF是菱形時(shí),求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上.

(Ⅰ)AC的長(zhǎng)度等于_____;

(Ⅱ)在圖中有一點(diǎn)P,若連接AP,PB,PC,滿足AP平分∠A,且PC=PB,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出點(diǎn)P,并簡(jiǎn)要說(shuō)明點(diǎn)P的位置是如何找到的(不要求證明)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,DE平分∠ADCBC邊于點(diǎn)E,PDE上的一點(diǎn)(PEPD),PMPD,PMAD邊于點(diǎn)M.

(1)若點(diǎn)F是邊CD上一點(diǎn),滿足PFPN,且點(diǎn)N位于AD邊上,如圖1所示.

求證:①PN=PF;DF+DN=DP;

(2)如圖2所示,當(dāng)點(diǎn)FCD邊的延長(zhǎng)線上時(shí),仍然滿足PFPN,此時(shí)點(diǎn)N位于DA邊的延長(zhǎng)線上,如圖2所示;試問(wèn)DF,DN,DP有怎樣的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、兩點(diǎn)在反比例函數(shù)的圖象上,下列三個(gè)命題:①若,則;②若,,則;③過(guò)兩點(diǎn)的直線與軸、軸分別交于兩點(diǎn),連接,則.其中真命題個(gè)數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案