【題目】如圖,在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60,得到△BAE,連接ED,若BC=5,BD=4,則有以下四個(gè)結(jié)論:①△BDE是等邊三角形;②AE∥BC;③△ADE的周長是9;④∠ADE=∠BDC。其中正確結(jié)論的序號(hào)是( )
A. ②③④ B. ①③④ C. ①②④ D. ①②③
【答案】D
【解析】
先由△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE得到BD=BE,∠DBE=60°,則可判斷△BDE是等邊三角形;根據(jù)等邊三角形的性質(zhì)得BA=BC,∠ABC=∠C=∠BAC=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,所以∠BAE=∠ABC=60°,則根據(jù)平行線的判定方法即可得到AE∥BC;根據(jù)等邊三角形的性質(zhì)得∠BDE=60°,而∠BDC>60°,則可判斷∠ADE≠∠BDC;由△BDE是等邊三角形得到DE=BD=4,再利用△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,則AE=CD,所以△AED的周長=AE+AD+DE=CD+AD+DE=AC+BD.
∵△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,
∴BD=BE,∠DBE=60°,
∴△BDE是等邊三角形,所以①正確;
∵△ABC為等邊三角形,
∴BA=BC,∠ABC=∠C=∠BAC=60°,
∵△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,
∴∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,
∴∠BAE=∠ABC,
∴AE∥BC,所以②正確;
∴∠BDE=60°,
∵∠BDC=∠BAC+∠ABD>60°,
∴∠ADE≠∠BDC,所以④錯(cuò)誤;
∵△BDE是等邊三角形,
∴DE=BD=4,
而△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,
∴AE=CD,
∴△AED的周長=AE+AD+DE=CD+AD+DE=AC+4=5+4=9,所以③正確;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,AE平分∠BAD,交BC于E,DE⊥AE,下列結(jié)論::①DE平分∠ADC;②E是BC的中點(diǎn);③AD=2CD;④梯形ADCE的面積與△ABE的面積比是3:1,其中正確的結(jié)論的個(gè)數(shù)有( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在距離鐵軌200米的B處,觀察由南寧開往百色的“和諧號(hào)”動(dòng)車,當(dāng)動(dòng)車車頭在A處時(shí),恰好位于B處的北偏東60°方向上;10秒鐘后,動(dòng)車車頭到達(dá)C處,恰好位于B處的西北方向上,則這時(shí)段動(dòng)車的平均速度是( )米/秒.
A.20( +1)
B.20( ﹣1)
C.200
D.300
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,輪船在A處觀測燈塔C位于北偏西70°方向上,輪船從A處以每小時(shí)20海里的速度沿南偏西50°方向勻速航行,1小時(shí)后到達(dá)碼頭B處,此時(shí),觀測燈塔C位于北偏西25°方向上,則燈塔C與碼頭B的距離是( )
A.10 海里
B.10 海里
C.10 海里
D.20 海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面的內(nèi)容,再解決問題.
例題:若m2+2mn+2n26n+9=0,求m和n的值.
解:∵m2+2mn+2n26n+9=0即:
∴m2+2mn+n2+n26n+9=0
∴
∴即:m+n=0,n-3=0
∴m=3,n=3
(1)若,求的值.
(2)若三角形三邊a,b,C都是正整數(shù),且滿足,判斷三角形的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE把∠BOD分成兩部分;
(1)直接寫出圖中∠AOC的對頂角為 ,∠BOE的鄰補(bǔ)角為 ;
(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣某初中為了創(chuàng)建書香校園,購進(jìn)了一批圖書.其中的20本某種科普書和30本某種文學(xué)書共花了1080元,經(jīng)了解,購買的科普書的單價(jià)比文學(xué)書的單價(jià)多4元.
(1)購買的科普書和文學(xué)書的單價(jià)各多少元?
(2)另一所學(xué)校打算用800元購買這兩種圖書,問購進(jìn)25本文學(xué)書后至多還能購進(jìn)多少本科普書?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com