【題目】某中學(xué)開展以“我最喜愛的傳統(tǒng)文化”為主題的調(diào)查活動,從“詩詞、國畫、對聯(lián)、書法、戲曲”五種傳統(tǒng)文化中,選取喜歡的一種(只選一種)進(jìn)行調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整統(tǒng)計圖.
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)喜歡“書法”的有多少名學(xué)生?并補(bǔ)全條形統(tǒng)計圖;
(3)求喜歡“國畫”對應(yīng)扇形圓心角的度數(shù).
【答案】(1)120名 (2)32名,見解析 (3)120°
【解析】
(1)根據(jù)喜愛詩詞的有24人,占比為20%即可計算調(diào)查的總?cè)藬?shù);(2)用總?cè)藬?shù)減去除書法外的人數(shù),則為喜歡書法的總?cè)藬?shù);(3)喜歡國畫的人數(shù)為40人,占比為,則喜歡“國畫”對應(yīng)扇形圓心角的度數(shù)為.
(1)∵(名),∴本次調(diào)查共抽取了120名學(xué)生;
(2)(名),所以喜歡“書法”的學(xué)生有32名,
補(bǔ)全條形圖如下:
;
(3).
所以喜歡“國畫”的學(xué)生對應(yīng)扇形的圓心角為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=5,∠C=30°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個單位長的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t秒(t>0),過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上兩點(diǎn)A、B對應(yīng)的數(shù)分別為-1、3,點(diǎn)P為數(shù)軸上一動點(diǎn),其對應(yīng)的數(shù)為x.
(1)若點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等,求點(diǎn)P對應(yīng)的數(shù);
(2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和為6?若存在,請求出x的值;若不存在,說明理由.
(3)點(diǎn)A、點(diǎn)B分別以2個單位長度/分、1個單位長度/分的速度向右運(yùn)動,同時點(diǎn)P以6個單位長度/分的速度從O點(diǎn)向左運(yùn)動.當(dāng)遇到A時,點(diǎn)P立即以同樣的速度向右運(yùn)動,并不停地往返于點(diǎn)A與點(diǎn)B之間,求當(dāng)點(diǎn)A與點(diǎn)B重合時,點(diǎn)P所經(jīng)過的總路程是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明、小兵、小英三人的家和學(xué)校在同一條東西走向的大街上,星期天班主任到這三位學(xué)生家進(jìn)行家訪,班主任從學(xué)校出發(fā)先向東走0.5千米到小明家,后又向東走1.5千米到小兵家,再向西走5千米到小英家,最后回到學(xué)校。
(1)以學(xué)校為原點(diǎn),畫出數(shù)軸并在數(shù)軸上分別表示出小明、小兵、小英三人家的位置。
(2)小明家距離小英家多遠(yuǎn)?
(3)這次家訪,班主任共走了多少千米路程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(1,4)、B(2,a)在函數(shù)y=(x>0)的圖象上,直線AB與x軸相交于點(diǎn)C,AD⊥x軸于點(diǎn)D.
(1)m= ;
(2)求點(diǎn)C的坐標(biāo);
(3)在x軸上是否存在點(diǎn)E,使以A、B、E為頂點(diǎn)的三角形與△ACD相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,∠BOC=30°,C在∠AOB外部,OM平分∠AOC,ON平分∠BOC. 則∠MON= 度.
(1)若∠AOB=α,其他條件不變,則∠MON= 度.
(2)若∠BOC=β(β為銳角),其他條件不變,則∠MON= 度.
(3)若∠AOB=α且∠BOC=β(β為銳角),求∠MON的度數(shù)(請在圖2中畫出示意圖并解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線m的表達(dá)式為y =﹣3x+3,且與x軸交于點(diǎn)B,直線n經(jīng)過點(diǎn)A(4,0),且與直線m交于點(diǎn)C(t,﹣3)
(1)求直線n的表達(dá)式.
(2)求△ABC的面積.
(3)在直線n上存在異于點(diǎn)C的另一點(diǎn)P,使△ABP與△ABC的面積相等,請直接寫出點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是,連接交于點(diǎn)O,并分別與邊交于點(diǎn),連接AE,下列結(jié)論:;;;當(dāng)時,,其中正確結(jié)論的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細(xì)閱讀下面的解題過程,并完成填空:如圖13,AD為△ABC的中線,已知AD=4cm,試確定AB+AC的取值范圍.
解:延長AD到E,使DE = AD,連接BE.
因為AD為△ABC的中線,
所以BD=CD.
在△ACD和△EBD中,因為AD=DE,∠ADC=∠EDB,CD=BD,所以△ACD≌△EBD(__________).
所以BE=AC(_____________________).
因為AB+BE>AE(_____________________),
所以AB+AC>AE.
因為AE=2AD=8cm,
所以AB+AC>_______cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com