【題目】如圖,直線m的表達(dá)式為y =﹣3x+3,且與x軸交于點(diǎn)B,直線n經(jīng)過點(diǎn)A(4,0),且與直線m交于點(diǎn)C(t,﹣3)
(1)求直線n的表達(dá)式.
(2)求△ABC的面積.
(3)在直線n上存在異于點(diǎn)C的另一點(diǎn)P,使△ABP與△ABC的面積相等,請直接寫出點(diǎn)P的坐標(biāo)是 .
【答案】(1)n的表達(dá)式為;(2)S△ABC的面積是4.5;(3)P點(diǎn)坐標(biāo)為(6,3).
【解析】
(1)把C點(diǎn)坐標(biāo)代入直線m,可求得t,再由待定系數(shù)法可求得直線n的解析式;
(2)可先求得B點(diǎn)坐標(biāo),則可求得AB,再由C點(diǎn)坐標(biāo)可求得△ABC的面積;
(3)由面積相等可知點(diǎn)P到x軸的距離和點(diǎn)C到y軸的距離相等,可求得P點(diǎn)縱坐標(biāo),代入直線n的解析式可求得P點(diǎn)坐標(biāo).
(1)∵直線m過C點(diǎn),
∴-3=-3t+3,解得t=2,
∴C(2,-3),
設(shè)直線n的解析式為y=kx+b,
把A、C兩點(diǎn)坐標(biāo)代入可得
,
解得,
∴直線n的解析式為y=1.5x-6;
(2)在y=-3x+3中,令y=0,可得0=-3x+3,解得x=1,
∴B(1,0),且A(4,0),
∴AB=4-1=3,且C點(diǎn)到x軸的距離h=3,
∴S△ABC=
(3)由點(diǎn)P在直線n上,故可設(shè)P點(diǎn)坐標(biāo)為(x,1.5x-6),
∵S△ABC=S△ABP,
∴P到x軸的距離=3,
∵C、P兩點(diǎn)不重合,
∴P點(diǎn)的縱坐標(biāo)為3,
∴1.5x-6=3,解得x=6,
∴P點(diǎn)坐標(biāo)為(6,3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列短文,并回答下列問題:我們把相似的概念推廣到空間:如果兩個(gè)幾何體大小不一定相等,但形狀完全相同,我們就把它們叫作相似體.
如圖,甲、乙是兩個(gè)不同的正方體,正方體都是相似體,它們的一切對應(yīng)線段之比都等于相似比( a ∶ b ),設(shè)S 甲 ,S 乙 分別表示這兩個(gè)正方體的表面積,則
.又設(shè)V 甲 ,V 乙 分別表示這兩個(gè)正方體的體積,則.
(1)下列幾何體中,一定屬于相似體的是(___)
A.兩個(gè)球體 B.兩個(gè)圓錐體
C.兩個(gè)圓柱體 D.兩個(gè)長方體
(2)請歸納出相似體的三個(gè)主要性質(zhì):①相似體的一切對應(yīng)線段(或弧)的比等于__________;②相似體的表面積的比等于__________;③相似體的體積比等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖A在數(shù)軸上對應(yīng)的數(shù)為-2.
(1)點(diǎn)B在點(diǎn)A右邊距離A點(diǎn)4個(gè)單位長度,則點(diǎn)B所對應(yīng)的數(shù)是_____.
(2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長度沿?cái)?shù)軸向左運(yùn)動,點(diǎn)B以每秒3個(gè)單位長度沿?cái)?shù)軸向右運(yùn)動.現(xiàn)兩點(diǎn)同時(shí)運(yùn)動,當(dāng)點(diǎn)A運(yùn)動到-6的點(diǎn)處時(shí),求A、B兩點(diǎn)間的距離.
(3)在(2)的條件下,現(xiàn)A點(diǎn)靜止不動,B點(diǎn)以原速沿?cái)?shù)軸向左運(yùn)動,經(jīng)過多長時(shí)間A、B兩點(diǎn)相距4個(gè)單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展以“我最喜愛的傳統(tǒng)文化”為主題的調(diào)查活動,從“詩詞、國畫、對聯(lián)、書法、戲曲”五種傳統(tǒng)文化中,選取喜歡的一種(只選一種)進(jìn)行調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整統(tǒng)計(jì)圖.
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)喜歡“書法”的有多少名學(xué)生?并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)求喜歡“國畫”對應(yīng)扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.
(1)求證:AB是⊙O的切線.
(2)已知AO交⊙O于點(diǎn)E,延長AO交⊙O于點(diǎn)D,tanD=,求的值.
(3)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長.
【答案】(1)證明見解析(2) (3)
【解析】試題分析:(1)過O作OF⊥AB于F,由角平分線上的點(diǎn)到角兩邊的距離相等即可得證;(2)連接CE,證明△ACE∽△ADC可得= tanD=;(3)先由勾股定理求得AE的長,再證明△B0F∽△BAC,得,設(shè)BO="y" ,BF=z,列二元一次方程組即可解決問題.
試題解析:(1)證明:作OF⊥AB于F
∵AO是∠BAC的角平分線,∠ACB=90
∴OC=OF
∴AB是⊙O的切線
(2)連接CE
∵AO是∠BAC的角平分線,
∴∠CAE=∠CAD
∵∠ACE所對的弧與∠CDE所對的弧是同弧
∴∠ACE=∠CDE
∴△ACE∽△ADC
∴= tanD=
(3)先在△ACO中,設(shè)AE=x,
由勾股定理得
(x+3)="(2x)" +3 ,解得x="2,"
∵∠BFO=90°=∠ACO
易證Rt△B0F∽Rt△BAC
得,
設(shè)BO=y BF=z
即4z=9+3y,4y=12+3z
解得z=y=
∴AB=+4=
考點(diǎn):圓的綜合題.
【題型】解答題
【結(jié)束】
22
【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且A點(diǎn)坐標(biāo)為(-6,0).
(1)求此二次函數(shù)的表達(dá)式;
(2)若點(diǎn)E是線段AB上的一個(gè)動點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作思考:如圖1,在平面直角坐標(biāo)系中,等腰的直角頂點(diǎn)C在原點(diǎn),將其繞著點(diǎn)O旋轉(zhuǎn),若頂點(diǎn)A恰好落在點(diǎn)處則的長為______;點(diǎn)B的坐標(biāo)為______直接寫結(jié)果
感悟應(yīng)用:如圖2,在平面直角坐標(biāo)系中,將等腰如圖放置,直角頂點(diǎn),點(diǎn),試求直線AB的函數(shù)表達(dá)式.
拓展研究:如圖3,在直角坐標(biāo)系中,點(diǎn),過點(diǎn)B作軸,垂足為點(diǎn)A,作軸,垂足為點(diǎn)C,P是線段BC上的一個(gè)動點(diǎn),點(diǎn)Q是直線上一動點(diǎn)問是否存在以點(diǎn)P為直角頂點(diǎn)的等腰,若存在,請求出此時(shí)P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 中,點(diǎn) ,點(diǎn) 分別在 軸, 軸上, 為邊 上的一動點(diǎn),現(xiàn)把 沿 對折, 點(diǎn)落在點(diǎn) 處.已知點(diǎn) 的坐標(biāo)為 .
(1) 當(dāng) 點(diǎn)坐標(biāo)為 時(shí),求 點(diǎn)的坐標(biāo);
(2) 在點(diǎn) 沿 從點(diǎn) 運(yùn)動至點(diǎn) 的過程中,設(shè)點(diǎn) 經(jīng)過的路徑長度為 ,求 的值;
(3) 在點(diǎn) 沿 從點(diǎn) 運(yùn)動至點(diǎn) 的過程中,若點(diǎn) 落在同一條直線 上的次數(shù)為 次,請直接寫出 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器商場銷售A、B兩種型號計(jì)算器,兩種計(jì)算器的進(jìn)貨價(jià)格分別為每臺30元,40元,商場銷售5臺A型號和1臺B型號計(jì)算器,可獲利潤76元;銷售6臺A型號和3臺B型號計(jì)算器,可獲利潤120元.求商場銷售A、B兩種型號計(jì)算器的銷售價(jià)格分別是多少元?(利潤=銷售價(jià)格﹣進(jìn)貨價(jià)格)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知□ABCD的對角線AC、BD交于O,且∠1=∠2.
(1)求證:□ABCD是菱形;
(2)F為AD上一點(diǎn),連結(jié)BF交AC于E,且AE=AF.求證:AO=(AF+AB).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com