【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺階,下圖是其中的甲、乙兩段臺階的示意圖,圖中的數(shù)字表示每一級臺階的高度(單位:cm).請你用所學(xué)過的有關(guān)統(tǒng)計知識,回答下列問題(數(shù)據(jù):15,16,16,14,14,15的方差,數(shù)據(jù):11,15,18,17,10,19的方差:
(1)分別求甲、乙兩段臺階的高度平均數(shù);
(2)哪段臺階走起來更舒服?與哪個數(shù)據(jù)(平均數(shù)、中位數(shù)、方差和極差)有關(guān)?
(3)為方便游客行走,需要陳欣整修上山的小路,對于這兩段臺階路.在總高度及臺階數(shù)不變的情況下,請你提出合理的整修建議.
【答案】(1)甲臺階高度的平均數(shù)15,乙臺階高度的平均數(shù)15;(2)甲段路走起來更舒服一些;(3)游客行走更舒服.
【解析】(1)根據(jù)圖中所給的數(shù)據(jù),利用平均數(shù)公式求解即可;
(2)根據(jù)平均數(shù)、中位數(shù)、方差和極差的特征回答即可;
(3)結(jié)合方差,要使臺階路走起來更舒服,就得讓方差變得更小,據(jù)此提出合理性的整修建議.
(1)甲臺階高度的平均數(shù):(15+16+16+14+14+15)÷6=15,
乙臺階高度的平均數(shù):(11+15+18+17+10+19)÷6=15.
(2)甲段路走起來更舒服一些,因為它的臺階高度的方差。
(3)每個臺階高度均為15cm(原平均數(shù))使得方差為0,游客行走更舒服.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條拋物線與x軸相交于A、B兩點,其頂點P在折線C﹣D﹣E上移動,若點C、D、E的坐標(biāo)分別為(﹣1,4)、(3,4)、(3,1),點B的橫坐標(biāo)的最小值為1,則點A的橫坐標(biāo)的最大值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】愛好思考的小茜在探究兩條直線的位置關(guān)系查閱資料時,發(fā)現(xiàn)了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AM⊥BN于點P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
(1)如圖1,當(dāng)tan∠PAB=1,c=4 時,a= , b=;
如圖2,當(dāng)∠PAB=30°,c=2時,a= , b=;
(2)請你觀察(1)中的計算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來,并利用圖3證明你的結(jié)論.
(3)如圖4,ABCD中,E、F分別是AD、BC的三等分點,且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點G,AD=3 ,AB=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中線段AB表示某工程的部分隧道,無人勘測飛機(jī)從隧道的一側(cè)點A出發(fā),沿著坡度為1:1.5的路線AE飛行,飛行至分界點C的正上方點D時,測得隧道另一側(cè)點B的俯角為23°,繼續(xù)飛行至點E,測得點B的俯角為45°,此時點E離地面的高度EF=800米.
(1)分別求隧道AC和BC段的長度;
(2)建工集團(tuán)安排甲、乙兩個金牌施工隊分別從隧道兩頭向中間施工,甲隊負(fù)責(zé)AC段施工,乙隊負(fù)責(zé)BC段施工,乙每天的工作量是甲的2倍,兩隊同時開工5天后,甲隊將速度提高25%,乙隊將速度提高了150%,從而兩隊同時完成,求原計劃甲、乙兩隊每天各施工多少米.(參考數(shù)據(jù):tan23°≈0.4,cos23°≈0.9)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點C按順時針方向旋轉(zhuǎn)至△A′B′C,使點A′落在BC的延長線上.已知∠A=27°,∠B=40°,則∠ACB′=度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中,點A,B,P都在格點上.請按要求畫出以AB為邊的格點四邊形,使P在四邊形內(nèi)部(不包括邊界上),且P到四邊形的兩個頂點的距離相等.
(1)在圖甲中畫出一個ABCD.
(2)在圖乙中畫出一個四邊形ABCD,使∠D=90°,且∠A≠90°.(注:圖甲、乙在答題紙上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在《九章算術(shù)》中有求三角形面積公式“底乘高的一半”,但是在實際丈量土地面積時,量出高并非易事,所以古人想到了能否利用三角形的三條邊長來求面積.我國南宋著名的數(shù)學(xué)家秦九韶(年—年)提出了“三斜求積術(shù)”,闡述了利用三角形三邊長求三角形面積方法,簡稱秦九韶公式.在海倫(公元年左右,生平不詳)的著作《測地術(shù)》中也記錄了利用三角形三邊長求三角形面積的方法,相傳這個公式最早是由古希臘數(shù)學(xué)家阿基米德(公元前年—公元前年)得出的,故我國稱這個公式為海倫一秦九韶公式.它的表達(dá)為:三角形三邊長分別為、、,則三角形的面積(公式里的為半周長即周長的一半).
請利用海倫一秦九韶公式解決以下問題:
()三邊長分別為、、的三角形面積為__________.
()四邊形中,,,,,,四邊形的面積為__________.
()五邊形中,,,,,,,五邊形的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x>0時,反比例函數(shù) ( 。
A.圖象在第四象限,y隨x的增大而增大
B.圖象在第三象限,y隨x的增大而增大
C.圖象在第二象限,y隨x的增大而減小
D.圖象在第一象限,y隨x的增大而減小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com