【題目】[感知發(fā)現(xiàn)]:如圖,是一個(gè)“豬手”圖,AB∥CD,點(diǎn)E在兩平行線之間,連接BE,DE ,我們發(fā)現(xiàn):∠E=∠B+∠D
證明如下:過E點(diǎn)作EF∥AB.
∠B=∠1(兩直線平行,內(nèi)錯(cuò)角相等.)
又AB∥CD(已知)
CD∥EF(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行.)
∠2=∠D(兩直線平行,內(nèi)錯(cuò)角相等.)
∠1+∠2=∠B+∠D(等式的性質(zhì)1.)
即:∠E=∠B+∠D
[類比探究]:如圖是一個(gè)“子彈頭”圖,AB∥CD,點(diǎn)E在兩平行線之間,連接BE,DE.試探究∠E+∠B+∠D=360°.寫出證明過程.
[創(chuàng)新應(yīng)用]:
(1).如圖一,是兩塊三角板按如圖所示的方式擺放,使直角頂點(diǎn)重合,斜邊平行,請直接寫出∠1的度數(shù).
(2).如圖二,將一個(gè)長方形ABCD按如圖的虛線剪下,使∠1=120,∠FEQ=90°. 請直接寫出∠2的度數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=a,BC=b(a>2b),點(diǎn)P在邊CD上,且PC=BC,長方形ABCD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°后得到長方形A'B'C'D'(點(diǎn)B'、C'落在邊AB上),請用a、b的代數(shù)式分別表示下列圖形的面積.
(1)三角形PCC'的面積S1;
(2)四邊形AA'CC'的面積S,并化簡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+6與x軸、y軸分別交于E、F.點(diǎn)E坐標(biāo)為(-8,0),點(diǎn)A的坐標(biāo)為(-6,0).
(1)求k的值;
(2)若點(diǎn)P(x,y)是第二象限內(nèi)的直線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)過程中,試寫出三角形OPA的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)探究:當(dāng)P運(yùn)動(dòng)到什么位置時(shí),三角形OPA的面積為9,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是直徑,過C點(diǎn)的切線與AB的延長線交于P點(diǎn),若∠P=40°,則∠D的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八個(gè)邊長為1的正方形如圖擺放在平面直角坐標(biāo)系中,經(jīng)過原點(diǎn)的一條直線l將這八個(gè)正方形分成面積相等的兩部分,則該直線l的解析式為( )
A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)根據(jù)畫函數(shù)圖象的步驟,在如圖的直角坐標(biāo)系中,畫出函數(shù)y=|x|的圖象;
(2)求證:無論m取何值,函數(shù)y=mx﹣2(m﹣1)的圖象經(jīng)過的一個(gè)確定的點(diǎn);
(3)若(1),(2)中兩圖象圍成圖形的面積剛好為2,求m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是∠BAC平分線,點(diǎn)E在AB上,且AE=AC,EF∥BC交AC于點(diǎn)F,AD與CE交于點(diǎn)G,與EF交于點(diǎn)H.
(1)證明:AD垂直平分CE;
(2)若∠BCE=40°,求∠EHD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD中,E是AD邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)F,G,H分別是BC,BE,CE的中點(diǎn).
(1)求證:△BGF≌△FHC;
(2)設(shè)AD=a,當(dāng)四邊形EGFH是正方形時(shí),求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點(diǎn)P.
(1)求證:△AEB≌△CDA;
(2)求∠BPQ的度數(shù);
(3)若BQ⊥AD于Q,PQ=6,PE=2,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com