精英家教網(wǎng)已知:如圖,點(diǎn)G為AH上一點(diǎn),GE∥AC且交AB于點(diǎn)E,GD⊥AC,GF⊥AB,垂足分別為點(diǎn)D、F.如果GD=
1
2
GE,EF=
3
2
GE,那么∠DGA=
 
度.
分析:根據(jù)銳角三角函數(shù)求出∠FEG=30°,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得GF=
1
2
GE,然后根據(jù)到角的兩邊距離相等的點(diǎn)在角的平分線上判斷出AH平分∠BAC,然后求解即可.
解答:解:∵EF=
3
2
GE,
∴cos∠FEG=
EF
GE
=
3
2
,
∴∠FEG=30°,
∵GE∥AC,
∴∠BAC=30°,
∴GF=
1
2
GE,
又∵GD=
1
2
GE,GD⊥AC,GF⊥AB,
∴AH平分∠BAC,
∴∠CAH=
1
2
×30°=15°,
∴∠DGA=90°-∠CAH=90°-15°=75°.
故答案為:75.
點(diǎn)評:本題考查了到角的兩邊距離相等的點(diǎn)在角的平分線上,特殊角的三角函數(shù)值,平行線的性質(zhì),熟記各性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、已知:如圖,點(diǎn)C為線段AB上一點(diǎn),△ACM、△CBN是等邊三角形,可以說明:△ACN≌△MCB,從而得到結(jié)論:AN=BM.
現(xiàn)要求:
(1)將△ACM繞C點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)180°,使A點(diǎn)落在CB上.請對照原題圖在下圖中畫出符合要求的圖形(不寫作法,保留作圖痕跡);
(2)在(1)所得到的圖形中,結(jié)論“AN=BM”是否還成立?若成立,請給予證明;若不成立,請說明理由;
(3)在(1)所得到的圖形中,設(shè)MA的延長線與BN相交于D點(diǎn),請你判斷△ABD與四邊形MDNC的形狀,并說明你的結(jié)論的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,點(diǎn)E為?ABCD對角線AC上的一點(diǎn),點(diǎn)F在BE的延長線上,且EF=BE,EF與CD相交于點(diǎn)G.
求證:DF∥AC.
(請用兩種方法證明,可以添輔助線,可以不添輔助線,如果兩種方法都添輔助線,要求是不同位置的線.)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖①,點(diǎn)C為線段AB上一點(diǎn),△ACM和△CBN都是等邊三角形,AN,BM交于點(diǎn)P,則△BCM≌△NCA,易證結(jié)論:①BM=AN.
(1)請寫出除①外的兩個(gè)結(jié)論:②
∠MBC=∠ANC
∠MBC=∠ANC
;③
∠BMC=∠NAC
∠BMC=∠NAC

(2)將△ACM繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)180°,使點(diǎn)A落在BC上.請對照原題圖形在圖②畫出符合要求的圖形.(不寫作法,保留作圖痕跡)
(3)在(2)所得到的下圖②中,探究“AN=BM”這一結(jié)論是否成立.若成立,請證明:若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,點(diǎn)P為線段AB上的動點(diǎn)(與A、B兩點(diǎn)不重合).在同一平面內(nèi),把線段AP、BP分別折成△CDP、△EFP,其中∠CDP=∠EFP=90°,且D、P、F三點(diǎn)共線.若△CDP、△EFP均為等腰三角形,且DF=2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,點(diǎn)C為線段AB的中點(diǎn),點(diǎn)E為線段AB上的點(diǎn),點(diǎn)D為線段AE的中點(diǎn),
(1)若線段AB=a,CE=b,|a-15|+(b-4.5)2=0,求a,b;
(2)如圖1,在(1)的條件下,求線段DE;
(3)如圖2,若AB=15,AD=2BE,求線段CE.

查看答案和解析>>

同步練習(xí)冊答案